Advertisement

Spinal Muscular Atrophy: A Clinical and Research Update

      Abstract

      Spinal muscular atrophy, a hereditary degenerative disorder of lower motor neurons associated with progressive muscle weakness and atrophy, is the most common genetic cause of infant mortality. It is caused by decreased levels of the “survival of motor neuron” (SMN) protein. Its inheritance pattern is autosomal recessive, resulting from mutations involving the SMN1 gene on chromosome 5q13. However, unlike many other autosomal recessive diseases, the SMN gene involves a unique structure (an inverted duplication) that presents potential therapeutic targets. Although no effective treatment for spinal muscular atrophy exists, the field of translational research in spinal muscular atrophy is active, and clinical trials are ongoing. Advances in the multidisciplinary supportive care of children with spinal muscular atrophy also offer hope for improved life expectancy and quality of life.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Pediatric Neurology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Monani U.R.
        • Lorson C.L.
        • Parsons D.W.
        • et al.
        A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2.
        Hum Mol Genet. 1999; 8: 1177-1183
        • Pearn J.
        Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy.
        J Med Genet. 1978; 15: 409-413
        • Ogino S.
        • Leonard D.G.
        • Rennert H.
        • Ewens W.J.
        • Wilson R.B.
        Genetic risk assessment in carrier testing for spinal muscular atrophy.
        Am J Med Genet. 2002; 110: 301-307
        • Ogino S.
        • Wilson R.B.
        • Gold B.
        New insights on the evolution of the SMN1 and SMN2 region: Simulation and meta-analysis for allele and haplotype frequency calculations.
        Eur J Hum Genet. 2004; 12: 1015-1023
        • Mostacciuolo M.L.
        • Danieli G.A.
        • Trevisan C.
        • Muller E.
        • Angelini C.
        Epidemiology of spinal muscular atrophies in a sample of the Italian population.
        Neuroepidemiology. 1992; 11: 34-38
        • Thieme A.
        • Mitulla B.
        • Schulze F.
        • Spiegler A.W.
        Epidemiological data on Werdnig-Hoffmann disease in Germany (West-Thuringen).
        Hum Genet. 1993; 91: 295-297
        • Mailman M.D.
        • Heinz J.W.
        • Papp A.C.
        • et al.
        Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2.
        Genet Med. 2002; 4: 20-26
        • Zaldivar T.
        • Montejo Y.
        • Acevedo A.M.
        • et al.
        Evidence of reduced frequency of spinal muscular atrophy type I in the Cuban population.
        Neurology. 2005; 65: 636-638
        • Hendrickson B.C.
        • Donohoe C.
        • Akmaev V.R.
        • et al.
        Differences in SMN1 allele frequencies among ethnic groups within North America.
        J Med Genet. 2009; 46: 641-644
        • Prior T.W.
        • Snyder P.J.
        • Rink B.D.
        • et al.
        Newborn and carrier screening for spinal muscular atrophy.
        Am J Med Genet [A]. 2010; 152A: 1608-1616
        • Zerres K.
        • Davies K.E.
        59th ENMC International Workshop: Spinal muscular atrophies: Recent progress and revised diagnostic criteria 17–19 April 1998, Soestduinen, The Netherlands.
        Neuromuscul Disord. 1999; 9: 272-278
        • Dubowitz V.
        Chaos in the classification of SMA: A possible resolution.
        Neuromuscul Disord. 1995; 5: 3-5
        • Iannaccone S.T.
        • Russman B.S.
        • Browne R.H.
        • Buncher C.R.
        • White M.
        • Samaha F.J.
        Prospective analysis of strength in spinal muscular atrophy: DCN/Spinal Muscular Atrophy Group.
        J Child Neurol. 2000; 15: 97-101
        • Wang C.H.
        • Finkel R.S.
        • Bertini E.S.
        • et al.
        Consensus statement for standard of care in spinal muscular atrophy.
        J Child Neurol. 2007; 22: 1027-1049
        • O’Hagen J.M.
        • Glanzman A.M.
        • McDermott M.P.
        • et al.
        An expanded version of the Hammersmith Functional Motor Scale for SMA II and III patients.
        Neuromuscul Disord. 2007; 17: 693-697
        • Thomas N.H.
        • Dubowitz V.
        The natural history of type I (severe) spinal muscular atrophy.
        Neuromuscul Disord. 1994; 4: 497-502
        • Crawford T.O.
        Spinal muscular atrophies.
        in: Jones H.R.J. De Vivo D.C. Darras B.T. Neuromuscular disorders of infancy, childhood, and adolescence: A clinician’s approach. Butterworth Heinemann, Philadelphia2003: 145-166
        • Menke L.A.
        • Poll-The B.T.
        • Clur S.A.
        • et al.
        Congenital heart defects in spinal muscular atrophy type I: A clinical report of two siblings and a review of the literature.
        Am J Med Genet [A]. 2008; 146A: 740-744
        • Rudnik-Schöneborn S.
        • Heller R.
        • Berg C.
        • et al.
        Congenital heart disease is a feature of severe infantile spinal muscular atrophy.
        J Med Genet. 2008; 45: 635-638
        • Heier C.R.
        • Satta R.
        • Lutz C.
        • DiDonato C.J.
        Arrhythmia and cardiac defects are a feature of spinal muscular atrophy model mice.
        Hum Mol Genet. 2010; 19: 3906-3918
        • Bevan A.K.
        • Hutchinson K.R.
        • Foust K.D.
        • et al.
        Early heart failure in the SMNDelta7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery.
        Hum Mol Genet. 2010; 19: 3895-3905
        • Shababi M.
        • Habibi J.
        • Yang H.T.
        • Vale S.M.
        • Sewell W.A.
        • Lorson C.L.
        Cardiac defects contribute to the pathology of spinal muscular atrophy models.
        Hum Mol Genet. 2010; 19: 4059-4071
        • Rudnik-Schöneborn S.
        • Vogelgesang S.
        • Armbrust S.
        • Graul-Neumann L.
        • Fusch C.
        • Zerres K.
        Digital necroses and vascular thrombosis in severe spinal muscular atrophy.
        Muscle Nerve. 2010; 42: 144-147
        • Araujo Ade Q.
        • Araujo M.
        • Swoboda K.J.
        Vascular perfusion abnormalities in infants with spinal muscular atrophy.
        J Pediatr. 2009; 155: 292-294
        • Rudnik-Schöneborn S.
        • Goebel H.H.
        • Schlote W.
        • et al.
        Classical infantile spinal muscular atrophy with SMN deficiency causes sensory neuronopathy.
        Neurology. 2003; 60: 983-987
        • Sproule D.M.
        • Montes J.
        • Montgomery M.
        • et al.
        Increased fat mass and high incidence of overweight despite low body mass index in patients with spinal muscular atrophy.
        Neuromuscul Disord. 2009; 19: 391-396
        • von Gontard A.
        • Zerres K.
        • Backes M.
        • et al.
        Intelligence and cognitive function in children and adolescents with spinal muscular atrophy.
        Neuromuscul Disord. 2002; 12: 130-136
        • Zerres K.
        • Rudnik-Schöneborn S.
        • Forrest E.
        • Lusakowska A.
        • Borkowska J.
        • Hausmanowa-Petrusewicz I.
        A collaborative study on the natural history of childhood and juvenile onset proximal spinal muscular atrophy (type II and III SMA): 569 patients.
        J Neurol Sci. 1997; 146: 67-72
        • MacLeod M.J.
        • Taylor J.E.
        • Lunt P.W.
        • Mathew C.G.
        • Robb S.A.
        Prenatal onset spinal muscular atrophy.
        Eur J Paediatr Neurol. 1999; 3: 65-72
        • Dubowitz V.
        Very severe spinal muscular atrophy (SMA type 0): An expanding clinical phenotype.
        Eur J Paediatr Neurol. 1999; 3: 49-51
        • Bingham P.M.
        • Shen N.
        • Rennert H.
        • et al.
        Arthrogryposis due to infantile neuronal degeneration associated with deletion of the SMNT gene.
        Neurology. 1997; 49: 848-851
        • Korinthenberg R.
        • Sauer M.
        • Ketelsen U.P.
        • et al.
        Congenital axonal neuropathy caused by deletions in the spinal muscular atrophy region.
        Ann Neurol. 1997; 42: 364-368
        • Russman B.S.
        Spinal muscular atrophy: Clinical classification and disease heterogeneity.
        J Child Neurol. 2007; 22: 946-951
        • Guillot N.
        • Cuisset J.M.
        • Cuvellier J.C.
        • Hurtevent J.F.
        • Joriot S.
        • Vallee L.
        Unusual clinical features in infantile spinal muscular atrophies.
        Brain Dev. 2008; 30: 169-178
        • Darras B.T.
        Non-5q spinal muscular atrophies: The alphanumeric soup thickens.
        Neurology. 2011; 77: 312-314
        • Lefebvre S.
        • Burglen L.
        • Reboullet S.
        • et al.
        Identification and characterization of a spinal muscular atrophy-determining gene.
        Cell. 1995; 80: 155-165
        • Lorson C.L.
        • Androphy E.J.
        An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN.
        Hum Mol Genet. 2000; 9: 259-265
        • Lefebvre S.
        • Burlet P.
        • Liu Q.
        • et al.
        Correlation between severity and SMN protein level in spinal muscular atrophy.
        Nat Genet. 1997; 16: 265-269
        • Prior T.W.
        Spinal muscular atrophy diagnostics.
        J Child Neurol. 2007; 22: 952-956
        • DiDonato C.
        • Ingraham S.
        • Mendell J.
        • et al.
        Deletions and conversion in spinal muscular atrophy patients: Is there a relationship to severity?.
        Ann Neurol. 1997; 41: 230-237
        • van der Steege G.
        • Grootscholten P.M.
        • Cobben J.M.
        • et al.
        Apparent gene conversions involving the SMN gene in the region of the spinal muscular atrophy locus on chromosome 5.
        Am J Hum Genet. 1996; 59: 834-838
        • Campbell L.
        • Potter A.
        • Ignatius J.
        • Dubowitz V.
        • Davies K.
        Genomic variation and gene conversion in spinal muscular atrophy: Implications for disease process and clinical phenotype.
        Am J Hum Genet. 1997; 61: 40-50
        • Feldkotter M.
        • Schwarzer V.
        • Wirth R.
        • Wienker T.F.
        • Wirth B.
        Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: Fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy.
        Am J Hum Genet. 2002; 70: 358-368
        • Arkblad E.
        • Tulinius M.
        • Kroksmark A.K.
        • Henricsson M.
        • Darin N.
        A population-based study of genotypic and phenotypic variability in children with spinal muscular atrophy.
        Acta Paediatr Scand. 2009; 98: 865-872
        • Saito M.
        • Chen Y.
        • Mizuguchi M.
        • Igarashi T.
        Quantitative analysis of SMN2 based on real-time PCR: Correlation of clinical severity and SMN2 gene dosage [in Japanese].
        No To Hattatsu. 2005; 37: 407-412
        • Rudnik-Schöneborn S.
        • Berg C.
        • Zerres K.
        • et al.
        Genotype-phenotype studies in infantile spinal muscular atrophy (SMA) type I in Germany: Implications for clinical trials and genetic counselling.
        Clin Genet. 2009; 76: 168-178
        • Prior T.W.
        • Swoboda K.J.
        • Scott H.D.
        • Hejmanowski A.Q.
        Homozygous SMN1 deletions in unaffected family members and modification of the phenotype by SMN2.
        Am J Med Genet [A]. 2004; 130A: 307-310
        • Prior T.W.
        • Krainer A.R.
        • Hua Y.
        • et al.
        A positive modifier of spinal muscular atrophy in the SMN2 gene.
        Am J Hum Genet. 2009; 85: 408-413
        • Oprea G.E.
        • Krober S.
        • McWhorter M.L.
        • et al.
        Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy.
        Science. 2008; 320: 524-527
        • Stratigopoulos G.
        • Lanzano P.
        • Deng L.
        • et al.
        Association of plastin 3 expression with disease severity in spinal muscular atrophy only in postpubertal females.
        Arch Neurol. 2010; 67: 1252-1256
        • Sumner C.J.
        • Kolb S.J.
        • Harmison G.G.
        • et al.
        SMN mRNA and protein levels in peripheral blood: Biomarkers for SMA clinical trials.
        Neurology. 2006; 66: 1067-1073
      1. Prior TW, Russman BS. Spinal muscular atrophy. In: Pagon RA, Bird TC, Dolan CR, Stephens K, eds. GeneReviews, 1993–2000 [updated April 3, 2006]. Seattle, WA: University of Washington (online).

        • McAndrew P.E.
        • Parsons D.W.
        • Simard L.R.
        • et al.
        Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number.
        Am J Hum Genet. 1997; 60: 1411-1422
        • Eggermann T.
        • Zerres K.
        • Anhuf D.
        • Kotzot D.
        • Fauth C.
        • Rudnik-Schöneborn S.
        Somatic mosaicism for a heterozygous deletion of the survival motor neuron (SMN1) gene.
        Eur J Hum Genet. 2005; 13: 309-313
        • Smith M.
        • Calabro V.
        • Chong B.
        • Gardiner N.
        • Cowie S.
        • du Sart D.
        Population screening and cascade testing for carriers of SMA.
        Eur J Hum Genet. 2007; 15: 759-766
        • Swoboda K.J.
        • Prior T.W.
        • Scott C.B.
        • et al.
        Natural history of denervation in SMA: Relation to age, SMN2 copy number, and function.
        Ann Neurol. 2005; 57: 704-712
        • ACOG Committee
        Opinion no. 432: Spinal muscular atrophy.
        Obstet Gynecol. 2009; 113: 1194-1196
        • Gitlin J.M.
        • Fischbeck K.
        • Crawford T.O.
        • et al.
        Carrier testing for spinal muscular atrophy.
        Genet Med. 2010; 12: 621-622
        • Martinez-Hernandez R.
        • Soler-Botija C.
        • Also E.
        • et al.
        The developmental pattern of myotubes in spinal muscular atrophy indicates prenatal delay of muscle maturation.
        J Neuropathol Exp Neurol. 2009; 68: 474-481
        • Liu Q.
        • Dreyfuss G.
        A novel nuclear structure containing the survival of motor neurons protein.
        EMBO J. 1996; 15: 3555-3565
        • Zhang H.
        • Xing L.
        • Rossoll W.
        • Wichterle H.
        • Singer R.H.
        • Bassell G.J.
        Multiprotein complexes of the survival of motor neuron protein SMN with Gemins traffic to neuronal processes and growth cones of motor neurons.
        J Neurosci. 2006; 26: 8622-8632
        • Meister G.
        • Hannus S.
        • Plottner O.
        • et al.
        SMNrp is an essential pre-mRNA splicing factor required for the formation of the mature spliceosome.
        EMBO J. 2001; 20: 2304-2314
        • Pellizzoni L.
        • Yong J.
        • Dreyfuss G.
        Essential role for the SMN complex in the specificity of snRNP assembly.
        Science. 2002; 298: 1775-1779
        • Kolb S.J.
        • Battle D.J.
        • Dreyfuss G.
        Molecular functions of the SMN complex.
        J Child Neurol. 2007; 22: 990-994
        • Cheng D.
        • Cote J.
        • Shaaban S.
        • Bedford M.T.
        The arginine methyltransferase CARM1 regulates the coupling of transcription and mRNA processing.
        Mol Cell. 2007; 25: 71-83
        • Rossoll W.
        • Jablonka S.
        • Andreassi C.
        • et al.
        SMN, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons.
        J Cell Biol. 2003; 163: 801-812
        • Monani U.R.
        • Sendtner M.
        • Coovert D.D.
        • et al.
        The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in SMN(−/−) mice and results in a mouse with spinal muscular atrophy.
        Hum Mol Genet. 2000; 9: 333-339
        • Hsieh-Li H.M.
        • Chang J.G.
        • Jong Y.J.
        • et al.
        A mouse model for spinal muscular atrophy.
        Nat Genet. 2000; 24: 66-70
        • Beattie C.E.
        • Carrel T.L.
        • McWhorter M.L.
        Fishing for a mechanism: Using zebrafish to understand spinal muscular atrophy.
        J Child Neurol. 2007; 22: 995-1003
        • McWhorter M.L.
        • Monani U.R.
        • Burghes A.H.
        • Beattie C.E.
        Knockdown of the survival motor neuron (SMN) protein in zebrafish causes defects in motor axon outgrowth and pathfinding.
        J Cell Biol. 2003; 162: 919-931
        • Bowerman M.
        • Anderson C.L.
        • Beauvais A.
        • Boyl P.P.
        • Witke W.
        • Kothary R.
        SMN, profilin IIa and plastin 3: A link between the deregulation of actin dynamics and SMA pathogenesis.
        Mol Cell Neurosci. 2009; 42: 66-74
        • Voigt T.
        • Meyer K.
        • Baum O.
        • Schumperli D.
        Ultrastructural changes in diaphragm neuromuscular junctions in a severe mouse model for spinal muscular atrophy and their prevention by bifunctional U7 snRNA correcting SMN2 splicing.
        Neuromuscul Disord. 2010; 20: 744-752
        • Ruiz R.
        • Casanas J.J.
        • Torres-Benito L.
        • Cano R.
        • Tabares L.
        Altered intracellular Ca2+ homeostasis in nerve terminals of severe spinal muscular atrophy mice.
        J Neurosci. 2010; 30: 849-857
        • Kong L.
        • Wang X.
        • Choe D.W.
        • et al.
        Impaired synaptic vesicle release and immaturity of neuromuscular junctions in spinal muscular atrophy mice.
        J Neurosci. 2009; 29: 842-851
        • Boon K.L.
        • Xiao S.
        • McWhorter M.L.
        • et al.
        Zebrafish survival motor neuron mutants exhibit presynaptic neuromuscular junction defects.
        Hum Mol Genet. 2009; 18: 3615-3625
        • Rossoll W.
        • Bassell G.J.
        Spinal muscular atrophy and a model for survival of motor neuron protein function in axonal ribonucleoprotein complexes.
        Results Probl Cell Differ. 2009; 48: 289-326
        • Kariya S.
        • Park G.H.
        • Maeno-Hikichi Y.
        • et al.
        Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy.
        Hum Mol Genet. 2008; 17: 2552-2569
        • Crawford T.O.
        Concerns about the design of clinical trials for spinal muscular atrophy.
        Neuromuscul Disord. 2004; 14: 456-460
        • Wu J.S.
        • Darras B.T.
        • Rutkove S.B.
        Assessing spinal muscular atrophy with quantitative ultrasound.
        Neurology. 2010; 75: 526-531
        • Montes J.
        • McDermott M.P.
        • Martens W.B.
        • et al.
        Six-Minute Walk Test demonstrates motor fatigue in spinal muscular atrophy.
        Neurology. 2010; 74: 833-838
        • Glanzman A.M.
        • Mazzone E.
        • Main M.
        • et al.
        The Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND): Test development and reliability.
        Neuromuscul Disord. 2010; 20: 155-161
        • Nelson L.
        • Owens H.
        • Hynan L.S.
        • Iannaccone S.T.
        The gross motor function measure is a valid and sensitive outcome measure for spinal muscular atrophy.
        Neuromuscul Disord. 2006; 16: 374-380
        • Main M.
        • Kairon H.
        • Mercuri E.
        • Muntoni F.
        The Hammersmith Functional Motor Scale for children with spinal muscular atrophy: A scale to test ability and monitor progress in children with limited ambulation.
        Eur J Paediatr Neurol. 2003; 7: 155-159
        • Krosschell K.J.
        • Maczulski J.A.
        • Crawford T.O.
        • Scott C.
        • Swoboda K.J.
        A modified Hammersmith Functional Motor Scale for use in multi-center research on spinal muscular atrophy.
        Neuromuscul Disord. 2006; 16: 417-426
        • Montes J.
        • Gordon A.M.
        • Pandya S.
        • De Vivo D.C.
        • Kaufmann P.
        Clinical outcome measures in spinal muscular atrophy.
        J Child Neurol. 2009; 24: 968-978
        • Tsai L.K.
        • Yang C.C.
        • Ting C.H.
        • Su Y.N.
        • Hwu W.L.
        • Li H.
        Correlation of survival motor neuron expression in leukocytes and spinal cord in spinal muscular atrophy.
        J Pediatr. 2009; 154: 303-305
        • Tiziano F.D.
        • Pinto A.M.
        • Fiori S.
        • et al.
        SMN transcript levels in leukocytes of SMA patients determined by absolute real-time PCR.
        Eur J Hum Genet. 2010; 18: 52-58
        • Iannaccone S.T.
        • Hynan L.S.
        • Morton A.
        • Buchanan R.
        • Limbers C.A.
        • Varni J.W.
        The PedsQL in pediatric patients with spinal muscular atrophy: Feasibility, reliability, and validity of the Pediatric Quality of Life Inventory Generic Core Scales and Neuromuscular Module.
        Neuromuscul Disord. 2009; 19: 805-812
        • Darras B.T.
        • Kang P.B.
        Clinical trials in spinal muscular atrophy.
        Curr Opin Pediatr. 2007; 19: 675-679
        • Lunke S.
        • El-Osta A.
        The emerging role of epigenetic modifications and chromatin remodeling in spinal muscular atrophy.
        J Neurochem. 2009; 109: 1557-1569
        • Chang J.G.
        • Hsieh-Li H.M.
        • Jong Y.J.
        • Wang N.M.
        • Tsai C.H.
        • Li H.
        Treatment of spinal muscular atrophy by sodium butyrate.
        Proc Natl Acad Sci USA. 2001; 98: 9808-9813
        • Andreassi C.
        • Angelozzi C.
        • Tiziano F.D.
        • et al.
        Phenylbutyrate increases SMN expression in vitro: Relevance for treatment of spinal muscular atrophy.
        Eur J Hum Genet. 2004; 12: 59-65
        • Brahe C.
        • Vitali T.
        • Tiziano F.D.
        • et al.
        Phenylbutyrate increases SMN gene expression in spinal muscular atrophy patients.
        Eur J Hum Genet. 2005; 13: 256-259
        • Mercuri E.
        • Bertini E.
        • Messina S.
        • et al.
        Pilot trial of phenylbutyrate in spinal muscular atrophy.
        Neuromuscul Disord. 2004; 14: 130-135
        • Mercuri E.
        • Bertini E.
        • Messina S.
        • et al.
        Randomized, double-blind, placebo-controlled trial of phenylbutyrate in spinal muscular atrophy.
        Neurology. 2007; 68: 51-55
        • Sumner C.J.
        • Huynh T.N.
        • Markowitz J.A.
        • et al.
        Valproic acid increases SMN levels in spinal muscular atrophy patient cells.
        Ann Neurol. 2003; 54: 647-654
        • Brichta L.
        • Hofmann Y.
        • Hahnen E.
        • et al.
        Valproic acid increases the SMN2 protein level: A well-known drug as a potential therapy for spinal muscular atrophy.
        Hum Mol Genet. 2003; 12: 2481-2489
        • Swoboda K.J.
        • Scott C.B.
        • Reyna S.P.
        • et al.
        Phase II open label study of valproic acid in spinal muscular atrophy.
        PLoS One. 2009; 4: e5268
        • Swoboda K.J.
        • Scott C.B.
        • Crawford T.O.
        • et al.
        SMA CARNI-VAL Trial part I: Double-blind, randomized, placebo-controlled trial of L-carnitine and valproic acid in spinal muscular atrophy.
        PLoS One. 2010; 5: e12140
        • Garbes L.
        • Riessland M.
        • Holker I.
        • et al.
        LBH589 induces up to 10–fold SMN protein levels by several independent mechanisms and is effective even in cells from SMA patients non-responsive to valproate.
        Hum Mol Genet. 2009; 18: 3645-3658
        • Grzeschik S.M.
        • Ganta M.
        • Prior T.W.
        • Heavlin W.D.
        • Wang C.H.
        Hydroxyurea enhances SMN2 gene expression in spinal muscular atrophy cells.
        Ann Neurol. 2005; 58: 194-202
        • Liang W.C.
        • Yuo C.Y.
        • Chang J.G.
        • et al.
        The effect of hydroxyurea in spinal muscular atrophy cells and patients.
        J Neurol Sci. 2008; 268: 87-94
        • Xu C.
        • Chen X.
        • Grzeschik S.M.
        • Ganta M.
        • Wang C.H.
        Hydroxyurea enhances SMN2 gene expression through nitric oxide release.
        Neurogenetics. 2011; 12: 19-24
        • Chen T.H.
        • Chang J.G.
        • Yang Y.H.
        • et al.
        Randomized, double-blind, placebo-controlled trial of hydroxyurea in spinal muscular atrophy.
        Neurology. 2010; 75: 2190-2197
        • Kinali M.
        • Mercuri E.
        • Main M.
        • et al.
        Pilot trial of albuterol in spinal muscular atrophy.
        Neurology. 2002; 59: 609-610
        • Pane M.
        • Staccioli S.
        • Messina S.
        • et al.
        Daily salbutamol in young patients with SMA type II.
        Neuromuscul Disord. 2008; 18: 536-540
        • Tiziano F.D.
        • Lomastro R.
        • Pinto A.M.
        • et al.
        Salbutamol increases survival motor neuron (SMN) transcript levels in leucocytes of spinal muscular atrophy (SMA) patients: Relevance for clinical trial design.
        J Med Genet. 2010; 47: 856-858
        • Angelozzi C.
        • Borgo F.
        • Tiziano F.D.
        • Martella A.
        • Neri G.
        • Brahe C.
        Salbutamol increases SMN mRNA and protein levels in spinal muscular atrophy cells.
        J Med Genet. 2008; 45: 29-31
        • Wolstencroft E.C.
        • Mattis V.
        • Bajer A.A.
        • Young P.J.
        • Lorson C.L.
        A non-sequence-specific requirement for SMN protein activity: The role of aminoglycosides in inducing elevated SMN protein levels.
        Hum Mol Genet. 2005; 14: 1199-1210
        • Heier C.R.
        • DiDonato C.J.
        Translational readthrough by the aminoglycoside geneticin (G418) modulates SMN stability in vitro and improves motor function in SMA mice in vivo.
        Hum Mol Genet. 2009; 18: 1310-1322
        • Haddad H.
        • Cifuentes-Diaz C.
        • Miroglio A.
        • Roblot N.
        • Joshi V.
        • Melki J.
        Riluzole attenuates spinal muscular atrophy disease progression in a mouse model.
        Muscle Nerve. 2003; 28: 432-437
        • Russman B.S.
        • Iannaccone S.T.
        • Samaha F.J.
        A phase 1 trial of riluzole in spinal muscular atrophy.
        Arch Neurol. 2003; 60: 1601-1603
        • Miller R.G.
        • Moore D.H.
        • Dronsky V.
        • et al.
        A placebo-controlled trial of gabapentin in spinal muscular atrophy.
        J Neurol Sci. 2001; 191: 127-131
        • Merlini L.
        • Solari A.
        • Vita G.
        • et al.
        Role of gabapentin in spinal muscular atrophy: Results of a multicenter, randomized Italian study.
        J Child Neurol. 2003; 18: 537-541
        • Biondi O.
        • Branchu J.
        • Sanchez G.
        • et al.
        In vivo NMDA receptor activation accelerates motor unit maturation, protects spinal motor neurons, and enhances SMN2 gene expression in severe spinal muscular atrophy mice.
        J Neurosci. 2010; 30: 11288-11299
        • Burghes A.H.
        • McGovern V.L.
        Antisense oligonucleotides and spinal muscular atrophy: Skipping along.
        Genes Dev. 2010; 24: 1574-1579
        • Hua Y.
        • Vickers T.A.
        • Okunola H.L.
        • Bennett C.F.
        • Krainer A.R.
        Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice.
        Am J Hum Genet. 2008; 82: 834-848
        • Singh N.N.
        • Shishimorova M.
        • Cao L.C.
        • Gangwani L.
        • Singh R.N.
        A short antisense oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal muscular atrophy.
        RNA Biol. 2009; 6: 341-350
        • Hua Y.
        • Sahashi K.
        • Hung G.
        • et al.
        Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model.
        Genes Dev. 2010; 24: 1634-1644
        • Williams J.H.
        • Schray R.C.
        • Patterson C.A.
        • Ayitey S.O.
        • Tallent M.K.
        • Lutz G.J.
        Oligonucleotide-mediated survival of motor neuron protein expression in CNS improves phenotype in a mouse model of spinal muscular atrophy.
        J Neurosci. 2009; 29: 7633-7638
        • Baughan T.D.
        • Dickson A.
        • Osman E.Y.
        • Lorson C.L.
        Delivery of bifunctional RNAs that target an intronic repressor and increase SMN levels in an animal model of spinal muscular atrophy.
        Hum Mol Genet. 2009; 18: 1600-1611
        • Geib T.
        • Hertel K.J.
        Restoration of full-length SMN promoted by adenoviral vectors expressing RNA antisense oligonucleotides embedded in U7 snRNAs.
        PLoS One. 2009; 4: e8204
        • Corti S.
        • Nizzardo M.
        • Nardini M.
        • et al.
        Embryonic stem cell-derived neural stem cells improve spinal muscular atrophy phenotype in mice.
        Brain. 2010; 133: 465-481
        • Ebert A.D.
        • Yu J.
        • Rose Jr., F.F.
        • et al.
        Induced pluripotent stem cells from a spinal muscular atrophy patient.
        Nature. 2009; 457: 277-280
        • Foust K.D.
        • Wang X.
        • McGovern V.L.
        • et al.
        Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN.
        Nat Biotechnol. 2010; 28: 271-274
        • Passini M.A.
        • Bu J.
        • Roskelley E.M.
        • et al.
        CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy.
        J Clin Invest. 2010; 120: 1253-1264
        • Iannaccone S.T.
        Modern management of spinal muscular atrophy.
        J Child Neurol. 2007; 22: 974-978
        • Schroth M.K.
        Special considerations in the respiratory management of spinal muscular atrophy.
        Pediatrics. 2009; 123: S245-S249
        • Mellies U.
        • Dohna-Schwake C.
        • Stehling F.
        • Voit T.
        Sleep disordered breathing in spinal muscular atrophy.
        Neuromuscul Disord. 2004; 14: 797-803
        • Markstrom A.
        • Cohen G.
        • Katz-Salamon M.
        The effect of long term ventilatory support on hemodynamics in children with spinal muscle atrophy (SMA) type II.
        Sleep Med. 2010; 11: 201-204
        • Durkin E.T.
        • Schroth M.K.
        • Helin M.
        • Shaaban A.F.
        Early laparoscopic fundoplication and gastrostomy in infants with spinal muscular atrophy type I.
        J Pediatr Surg. 2008; 43: 2031-2037
        • Yuan N.
        • Wang C.H.
        • Trela A.
        • Albanese C.T.
        Laparoscopic Nissen fundoplication during gastrostomy tube placement and noninvasive ventilation may improve survival in type I and severe type II spinal muscular atrophy.
        J Child Neurol. 2007; 22: 727-731
        • Sproule D.M.
        • Montes J.
        • Dunaway S.
        • et al.
        Adiposity is increased among high-functioning, non-ambulatory patients with spinal muscular atrophy.
        Neuromuscul Disord. 2010; 20: 448-452
        • Fujak A.
        • Kopschina C.
        • Forst R.
        • Gras F.
        • Mueller L.A.
        • Forst J.
        Fractures in proximal spinal muscular atrophy.
        Arch Orthop Trauma Surg. 2010; 130: 775-780