Biologically Targeted Therapeutics in Pediatric Brain Tumors

  • Amulya A. Nageswara Rao
    Division of Pediatric Hematology/Oncology, Department of Pediatrics and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota

    Department of Neurology and Pediatrics, George Washington University, Washington, DC

    Brain Tumor Institute, Children’s National Medical Center, Washington, DC

    Center for Neuroscience and Behavioral Medicine, Children’s National Medical Center, Washington, DC
    Search for articles by this author
  • Joseph Scafidi
    Department of Neurology and Pediatrics, George Washington University, Washington, DC

    Brain Tumor Institute, Children’s National Medical Center, Washington, DC

    Center for Neuroscience and Behavioral Medicine, Children’s National Medical Center, Washington, DC
    Search for articles by this author
  • Elizabeth M. Wells
    Department of Neurology and Pediatrics, George Washington University, Washington, DC

    Brain Tumor Institute, Children’s National Medical Center, Washington, DC

    Center for Neuroscience and Behavioral Medicine, Children’s National Medical Center, Washington, DC
    Search for articles by this author
  • Roger J. Packer
    Communications should be addressed to: Dr. Packer; Department of Neurology; Children’s National Medical Center; 111 Michigan Avenue NW; Washington, DC 20010.
    Department of Neurology and Pediatrics, George Washington University, Washington, DC

    Brain Tumor Institute, Children’s National Medical Center, Washington, DC

    Center for Neuroscience and Behavioral Medicine, Children’s National Medical Center, Washington, DC
    Search for articles by this author


      Pediatric brain tumors are often difficult to cure and involve significant morbidity when treated with traditional treatment modalities, including neurosurgery, conventional chemotherapy, and radiotherapy. During the past two decades, a clearer understanding of tumorigenesis, molecular growth pathways, and immune mechanisms in the pathogenesis of cancer has opened up promising avenues for therapy. Pediatric clinical trials with novel biologic agents are underway to treat various pediatric brain tumors, including high and low grade gliomas and embryonal tumors. As the therapeutic potential of these agents undergoes evaluation, their toxicity profiles are also becoming better understood. These agents have potentially better central nervous system penetration and lower toxicity profiles compared with conventional chemotherapy. In infants and younger children, biologic agents may prove to be of equal or greater efficacy compared with traditional chemotherapy and radiation therapy, and may reduce the deleterious side effects of traditional therapeutics on the developing brain. Molecular pathways implicated in pediatric brain tumors, agents that target these pathways, and current clinical trials are reviewed. Associated neurologic toxicities will be discussed subsequently. Considerable work is needed to establish the efficacy of these agents alone and in combination, but pediatric neurologists should be aware of these agents and their rationale.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Pediatric Neurology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Central Brain Tumor Registry of the United States
        CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2004–2007.
        Central Brain Tumor Registry of the United States, Hinsdale, IL2011 (Available at:)
        • Armstrong G.T.
        • Liu Q.
        • Yasui Y.
        • et al.
        Long-term outcomes among adult survivors of childhood central nervous system malignancies in the Childhood Cancer Survivor Study.
        JNCI. 2009; 101: 946-958
        • Turner C.D.
        • Rey-Casserly C.
        • Liptak C.C.
        • Chordas C.
        Late effects of therapy for pediatric brain tumor survivors.
        J Child Neurol. 2009; 24: 1455-1463
        • Warren K.E.
        • Packer R.J.
        Current approaches to CNS tumors in infants and very young children.
        Expert Rev Neurother. 2004; 4: 681-690
        • Merchant T.E.
        • Pollack I.F.
        • Loeffler J.S.
        Brain tumors across the age spectrum: Biology, therapy, and late effects.
        Semin Radiat Oncol. 2010; 20: 58-66
        • Faury D.
        • Nantel A.
        • Dunn S.E.
        • et al.
        Molecular profiling identifies prognostic subgroups of pediatric glioblastoma and shows increased YB-1 expression in tumors.
        J Clin Oncol. 2007; 25: 1196-1208
        • Lo H.W.
        Targeting Ras-Raf-ERK and its interactive pathways as a novel therapy for malignant gliomas.
        Curr Cancer Drug Targets. 2010; 10: 840-848
        • de Bont J.M.
        • Packer R.J.
        • Michiels E.M.
        • den Boer M.L.
        • Pieters R.
        Biological background of pediatric medulloblastoma and ependymoma: A review from a translational research perspective.
        Neurol Oncol. 2008; 10: 1040-1060
        • Brantley E.C.
        • Benveniste E.N.
        Signal transducer and activator of transcription-3: A molecular hub for signaling pathways in gliomas.
        Mol Cancer Res. 2008; 6: 675-684
        • Lemmon M.A.
        • Schlessinger J.
        Cell signaling by receptor tyrosine kinases.
        Cell. 2010; 141: 1117-1134
        • Weiner H.L.
        The role of growth factor receptors in central nervous system development and neoplasia.
        Neurosurgery. 1995; 37: 179-194
        • Blume-Jensen P.
        • Hunter T.
        Oncogenic kinase signalling.
        Nature. 2001; 411: 355-365
        • Witsch E.
        • Sela M.
        • Yarden Y.
        Roles for growth factors in cancer progression.
        Physiology (Bethesda). 2010; 25: 85-101
        • Perona R.
        Cell signalling: Growth factors and tyrosine kinase receptors.
        Clin Transl Oncol. 2006; 8: 77-82
        • Hanahan D.
        • Weinberg R.A.
        Hallmarks of cancer: The next generation.
        Cell. 2011; 144: 646-674
        • Sun Y.
        • Goderie S.K.
        • Temple S.
        Asymmetric distribution of EGFR receptor during mitosis generates diverse CNS progenitor cells.
        Neuron. 2005; 45: 873-886
        • Burgess A.W.
        EGFR family: Structure physiology signalling and therapeutic targets.
        Growth Factors. 2008; 26: 263-274
        • Bax D.A.
        • Gaspar N.
        • Little S.E.
        • et al.
        EGFRvIII deletion mutations in pediatric high-grade glioma and response to targeted therapy in pediatric glioma cell lines.
        Clin Cancer Res. 2009; 15: 5753-5761
        • Pollack I.F.
        • Hamilton R.L.
        • James C.D.
        • et al.
        Rarity of PTEN deletions and EGFR amplification in malignant gliomas of childhood: Results from the Children’s Cancer Group 945 cohort.
        J Neurosurg. 2006; 105: 418-424
        • Suri V.
        • Das P.
        • Pathak P.
        • et al.
        Pediatric glioblastomas: A histopathological and molecular genetic study.
        Neurol Oncol. 2009; 11: 274-280
        • Nakamura M.
        • Shimada K.
        • Ishida E.
        • et al.
        Molecular pathogenesis of pediatric astrocytic tumors.
        Neurol Oncol. 2007; 9: 113-123
        • Gilbertson R.J.
        • Hill D.A.
        • Hernan R.
        • et al.
        ERBB1 is amplified and overexpressed in high-grade diffusely infiltrative pediatric brain stem glioma.
        Clin Cancer Res. 2003; 9: 3620-3624
        • Gilbertson R.J.
        • Bentley L.
        • Hernan R.
        • et al.
        ERBB receptor signaling promotes ependymoma cell proliferation and represents a potential novel therapeutic target for this disease.
        Clin Cancer Res. 2002; 8: 3054-3064
        • Gilbertson R.J.
        • Perry R.H.
        • Kelly P.J.
        • Pearson A.D.
        • Lunec J.
        Prognostic significance of HER2 and HER4 coexpression in childhood medulloblastoma.
        Cancer Res. 1997; 57: 3272-3280
        • Gajjar A.
        • Hernan R.
        • Kocak M.
        Clinical, histopathologic, and molecular markers of prognosis: Toward a new disease risk stratification system for medulloblastoma.
        J Clin Oncol. 2004; 22: 984-993
        • Eller J.L.
        • Longo S.L.
        • Kyle M.M.
        • Bassano D.
        • Hicklin D.J.
        • Canute G.W.
        Anti-epidermal growth factor receptor monoclonal antibody cetuximab augments radiation effects in glioblastoma multiforme in vitro and in vivo.
        Neurosurgery. 2005; 56: 155-162
        • Trippett T.M.
        • Herzog C.
        • Whitlock J.A.
        • et al.
        Phase I and pharmacokinetic study of cetuximab and irinotecan in children with refractory solid tumors: A study of the Pediatric Oncology Experimental Therapeutic Investigators’ Consortium.
        J Clin Oncol. 2009; 27: 5102-5108
        • Pillay V.
        • Allaf L.
        • Wilding A.L.
        • et al.
        The plasticity of oncogene addiction: Implications for targeted therapies directed to receptor tyrosine kinases.
        Neoplasia. 2009; 11: 448-458
        • Jakacki R.I.
        • Hamilton M.
        • Gilbertson R.J.
        • et al.
        Pediatric phase I and pharmacokinetic study of erlotinib followed by the combination of erlotinib and temozolomide: A Children’s Oncology Group Phase I Consortium study.
        J Clin Oncol. 2008; 26: 4921-4927
        • Geoerger B.
        • Hargrave D.
        • Thomas F.
        • et al.
        Innovative therapies for children with cancer pediatric phase I study of erlotinib in brainstem glioma and relapsing/refractory brain tumors.
        Neurol Oncol. 2011; 13: 109-118
        • Pollack I.F.
        • Stewart C.F.
        • Kocak M.
        • et al.
        A phase II study of gefitinib and irradiation in children with newly diagnosed brainstem gliomas: A report from the Pediatric Brain Tumor Consortium.
        Neurol Oncol. 2011; 13: 290-297
        • Fouladi M.
        • Stewart C.F.
        • Blaney S.M.
        • et al.
        Phase I trial of lapatinib in children with refractory CNS malignancies: a Pediatric Brain Tumor Consortium study.
        J Clin Oncol. 2010; 28: 4221-4227
        • Baumann M.
        • Krause M.
        • Dikomey E.
        • et al.
        EGFR-targeted anti-cancer drugs in radiotherapy: Preclinical evaluation of mechanisms.
        Radiother Oncol. 2007; 83: 238-248
        • Schaefer G.
        • Shao L.
        • Totpal K.
        • Akita R.W.
        Erlotinib directly inhibits HER2 kinase activation and downstream signaling events in intact cells lacking epidermal growth factor receptor expression.
        Cancer Res. 2007; 67: 1228-1238
        • Xia W.
        • Mullin R.J.
        • Keith B.R.
        • et al.
        Anti-tumor activity of GW572016: A dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream ERK1/2 and Akt pathways.
        Oncogene. 2002; 21: 6255-6263
        • Massimino M.
        • Bode U.
        • Biassoni V.
        • Fleischhack G.
        Nimotuzumab for pediatric diffuse intrinsic pontine gliomas.
        Expert Opin Biol Ther. 2011; 11: 247-256
        • He Y.
        • Cai W.
        • Wang L.
        • Chen P.
        A developmental study on the expression of PDGFalphaR immunoreactive cells in the brain of postnatal rats.
        Neurosci Res. 2009; 65: 272-279
        • Jackson E.L.
        • Garcia-Verdugo J.M.
        • Gil-Perotin S.
        • et al.
        PDGFR alpha-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling.
        Neuron. 2006; 51: 187-199
        • Ishii Y.
        • Oya T.
        • Zheng L.
        • et al.
        Mouse brains deficient in neuronal PDGF receptor-β develop normally but are vulnerable to injury.
        J Neurochem. 2006; 98: 588-600
        • Shih A.H.
        • Holland E.C.
        Platelet-derived growth factor (PDGF) and glial tumorigenesis.
        Cancer Lett. 2006; 232: 139-147
        • Ostman A.
        • Heldin C.H.
        PDGF receptors as targets in tumor treatment.
        Adv Cancer Res. 2007; 97: 247-274
        • Zarghooni M.
        • Bartels U.
        • Lee E.
        • et al.
        Whole-genome profiling of pediatric diffuse intrinsic pontine gliomas highlights platelet-derived growth factor receptor alpha and poly (ADP-ribose) polymerase as potential therapeutic targets.
        J Clin Oncol. 2010; 28: 1337-1344
        • Paugh B.S.
        • Qu C.
        • Jones C.
        • et al.
        Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease.
        J Clin Oncol. 2010; 28: 3061-3068
        • Thorarinsdottir H.K.
        • Santi M.
        • McCarter R.
        • et al.
        Protein expression of platelet-derived growth factor receptor correlates with malignant histology and PTEN with survival in childhood gliomas.
        Clin Cancer Res. 2008; 14: 3386-3394
        • Blom T.
        • Roselli A
        • Häyry V.
        • et al.
        Amplification and overexpression of KIT, PDGFRA, and VEGFR2 in medulloblastomas and primitive neuroectodermal tumors.
        J Neurooncol. 2010; 97: 217-224
        • Baruchel S.
        • Sharp J.R.
        • Bartels U.
        • et al.
        A Canadian Paediatric Brain Tumour Consortium (CPBTC) phase II molecularly targeted study of imatinib in recurrent and refractory paediatric central nervous system tumours.
        Eur J Cancer. 2009; 45: 2352-2359
        • Geoerger B.
        • Morland B.
        • Ndiaye A.
        • et al.
        Target-driven exploratory study of imatinib mesylate in children with solid malignancies by the Innovative Therapies for Children with Cancer (ITCC) European Consortium.
        Eur J Cancer. 2009; 45: 2342-2351
        • Pollack I.F.
        • Jakacki R.I.
        • Blaney S.M.
        • et al.
        Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: A Pediatric Brain Tumor Consortium report.
        Neurol Oncol. 2007; 9: 145-160
        • Bazzoni G.
        Signalling pathways and adhesion molecules as targets for antiangiogenesis therapy in tumors.
        Adv Exp Med Biol. 2008; 610: 74-87
        • Greenberg D.A.
        • Jin K.
        From angiogenesis to neuropathology.
        Nature. 2005; 438: 954-959
        • Rosenstein J.M.
        • Krum J.M.
        New roles for VEGF in nervous tissue: Beyond blood vessels.
        Exp Neurol. 2004; 187: 246-253
        • Li Z.
        • Bao S.
        • Wu Q.
        • et al.
        Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells.
        Cancer Cell. 2009; 15: 501-513
        • Jogi A.
        • Øra I.
        • Nilsson H.
        • et al.
        Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype.
        Proc Natl Acad Sci USA. 2002; 99: 7021-7026
        • Packer R.J.
        • Jakacki R.
        • Horn M.
        • et al.
        Objective response of multiply recurrent low-grade gliomas to bevacizumab and irinotecan.
        Pediatr Blood Cancer. 2009; 52: 791-795
        • Narayana A.
        • Kunnakkat S.
        • Chacko-Mathew J.
        • et al.
        Bevacizumab in recurrent high-grade pediatric gliomas.
        Neurol Oncol. 2010; 12: 985-990
        • Gururangan S.
        • Chi S.N.
        • Young Poussaint T.
        • et al.
        Lack of efficacy of bevacizumab plus irinotecan in children with recurrent malignant glioma and diffuse brainstem glioma: A Pediatric Brain Tumor Consortium study.
        J Clin Oncol. 2010; 28: 3069-3075
        • Ma S.
        • Rosen S.T.
        Curr Opin Oncol. 2007; 19: 590-595
        • Sebolt-Leopold J.S.
        • Herrera R.
        Targeting the mitogen-activated protein kinase cascade to treat cancer.
        Nat Rev Cancer. 2004; 4: 937-947
        • Roberts P.J.
        • Der C.J.
        Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer.
        Oncogene. 2007; 26: 3291-3310
        • Pfister S.
        • Janzarik W.G.
        • Remke M.
        • et al.
        BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas.
        J Clin Invest. 2008; 118: 1739-1749
        • Kieran M.W.
        • Packer R.J.
        • Onar A.
        • et al.
        Phase I and pharmacokinetic study of the oral farnesyltransferase inhibitor lonafarnib administered twice daily to pediatric patients with advanced central nervous system tumors using a modified continuous reassessment method: A Pediatric Brain Tumor Consortium study.
        J Clin Oncol. 2007; 25: 3137-3143
        • Fouladi M.
        • Nicholson H.S.
        • Zhou T.
        • et al.
        A phase II study of the farnesyl transferase inhibitor, tipifarnib, in children with recurrent or progressive high-grade glioma, medulloblastoma/primitive neuroectodermal tumor, or brainstem glioma: A Children’s Oncology Group study.
        Cancer. 2007; 110: 2535-2541
        • Haas-Kogan D.A.
        • Banerjee A.
        • Poussaint T.Y.
        • et al.
        Phase II trial of tipifarnib and radiation in children with newly diagnosed diffuse intrinsic pontine gliomas.
        Neurol Oncol. 2011; 13: 298-306
        • Wilhelm S.M.
        • Carter C.
        • Tang L.
        • et al.
        BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the Raf/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis.
        Cancer Res. 2004; 64: 7099-7109
        • Schindler G.
        • Capper D.
        • Meyer J.
        • et al.
        Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma.
        Acta Neuropathol (Berl). 2011; 121: 397-405
        • Gronych J.
        • Korshunov A.
        • Bageritz J.
        • et al.
        An activated mutant BRAF kinase domain is sufficient to induce pilocytic astrocytoma in mice.
        J Clin Invest. 2011; 121: 1344-1348
        • Keir S.T.
        • Maris J.M.
        • Lock R.
        • et al.
        Initial testing (stage 1) of the multi-targeted kinase inhibitor sorafenib by the Pediatric Preclinical Testing Program.
        Pediatr Blood Cancer. 2010; 55: 1126-1133
        • Maris J.M.
        • Courtright J.
        • Houghton P.J.
        • et al.
        Initial testing (stage 1) of sunitinib by the Pediatric Preclinical Testing Program.
        Pediatr Blood Cancer. 2008; 51: 42-48
        • Solit D.B.
        • Garraway L.A.
        • Pratilas C.A.
        • et al.
        BRAF mutation predicts sensitivity to MEK inhibition.
        Nature. 2006; 439: 358-362
        • Kolb E.A.
        • Gorlick R.
        • Houghton P.J.
        • et al.
        Initial testing (stage 1) of AZD6244 (ARRY-142886) by the Pediatric Preclinical Testing Program.
        Pediatr Blood Cancer. 2010; 55: 668-677
        • Cheng C.K.
        • Fan Q.W.
        • Weiss W.A.
        PI3K signaling in glioma: Animal models and therapeutic challenges.
        Brain Pathol. 2009; 19: 112-120
        • Pollack I.F.
        • Hamilton R.L.
        • Burger P.C.
        • et al.
        Akt activation is a common event in pediatric malignant gliomas and a potential adverse prognostic marker: A report from the Children’s Oncology Group.
        J Neurooncol. 2010; 99: 155-163
        • Shaw R.J.
        • Cantley L.C.
        Ras, PI(3)K and mTOR signalling controls tumour cell growth.
        Nature. 2006; 441: 424-430
        • Fan Q.W.
        • Knight Z.A.
        • Goldenberg D.D.
        • et al.
        A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma.
        Cancer Cell. 2006; 9: 341-349
        • Baryawno N.
        • Sveinbjörnsson B.
        • Eksborg S.
        • Chen C.S.
        • Kogner P.
        • Johnsen J.I.
        Small-molecule inhibitors of phosphatidylinositol 3-kinase/Akt signaling inhibit Wnt/beta-catenin pathway cross-talk and suppress medulloblastoma growth.
        Cancer Res. 2010; 70: 266-276
        • Krueger D.A.
        • Care M.M.
        • Holland K.
        • et al.
        Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis.
        N Engl J Med. 2010; 363: 1801-1811
        • Huber H.
        • Eggert A.
        • Janss A.J.
        • et al.
        Angiogenic profile of childhood primitive neuroectodermal brain tumours/medulloblastomas.
        Eur J Cancer. 2001; 37: 2064-2072
        • Sie M.
        • de Bont E.S.
        • Scherpen F.J.
        • Hoving E.W.
        • den Dunnen W.F.
        Tumour vasculature and angiogenic profile of paediatric pilocytic astrocytoma: Is it much different from glioblastoma?.
        Neuropathol Appl Neurobiol. 2010; 36: 636-647
        • Herrington B.
        • Kieran M.W.
        Small molecule inhibitors in children with malignant gliomas.
        Pediatr Blood Cancer. 2009; 53: 312-317
        • Fine H.A.
        • Figg W.D.
        • Jaeckle K.
        • et al.
        Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas.
        J Clin Oncol. 2000; 18: 708-715
        • Turner C.D.
        • Chi S.
        • Marcus K.J.
        • et al.
        Phase II study of thalidomide and radiation in children with newly diagnosed brain stem gliomas and glioblastoma multiforme.
        J Neurooncol. 2007; 82: 95-101
        • Warren K.E.
        • Goldman S.
        • Pollack I.F.
        • et al.
        Phase I trial of lenalidomide in pediatric patients with recurrent, refractory, or progressive primary CNS tumors: Pediatric Brain Tumor Consortium Study PBTC-018.
        J Clin Oncol. 2011; 29: 324-329
        • Becchetti A.
        • Arcangeli A.
        Integrins and ion channels in cell migration: Implications for neuronal development, wound healing and metastatic spread.
        Adv Exp Med Biol. 2010; 674: 107-123
        • Streuli C.H.
        • Akhtar N.
        Signal co-operation between integrins and other receptor systems.
        Biochem J. 2009; 418: 491-506
        • Teodorczyk M.
        • Martin-Villalba A.
        Sensing invasion: Cell surface receptors driving spreading of glioblastoma.
        J Cell Physiol. 2010; 222: 1-10
        • Abdollahi A.
        • Griggs D.W.
        • Zieher H.
        • et al.
        Inhibition of alpha(v)beta3 integrin survival signaling enhances antiangiogenic and antitumor effects of radiotherapy.
        Clin Cancer Res. 2005; 11: 6270-6279
        • Reardon D.A.
        • Nabors L.B.
        • Stupp R.
        • Mikkelsen T.
        Cilengitide: An integrin-targeting arginine-glycine-aspartic acid peptide with promising activity for glioblastoma multiforme.
        Expert Opin Invest Drugs. 2008; 17: 1225-1235
        • Stupp R.
        • Hegi M.E.
        • Neyns B.
        • et al.
        Phase I/IIa study of cilengitide and temozolomide with concomitant radiotherapy followed by cilengitide and temozolomide maintenance therapy in patients with newly diagnosed glioblastoma.
        J Clin Oncol. 2010; 28: 2712-2718
        • MacDonald T.J.
        • Stewart C.F.
        • Kocak M.
        • et al.
        Phase I clinical trial of cilengitide in children with refractory brain tumors: Pediatric Brain Tumor Consortium Study PBTC-012.
        J Clin Oncol. 2008; 26: 919-924
        • Thompson M.C.
        • Fuller C.
        • Hogg T.L.
        • et al.
        Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations.
        J Clin Oncol. 2006; 24: 1924-1931
        • Ellison D.W.
        • Dalton J.
        • Kocak M.
        • et al.
        Medulloblastoma: Clinicopathological correlates of SHh, Wnt, and non-SHh/Wnt molecular subgroups.
        Acta Neuropathol (Berl). 2011; 121: 381-396
        • Romer J.T.
        • Kimura H.
        • Magdaleno S.
        • et al.
        Suppression of the SHh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/−)p53(−/−) mice.
        Cancer Cell. 2004; 6: 229-240
        • Yoon K.
        • Gaiano N.
        Notch signaling in the mammalian central nervous system: Insights from mouse mutants.
        Nat Neurosci. 2005; 8: 709-715
        • Ables J.L.
        • Breunig J.J.
        • Eisch A.J.
        • Rakic P.
        Not(ch) just development: Notch signalling in the adult brain.
        Nat Rev Neurosci. 2011; 12: 269-283
        • Purow B.W.
        • Haque R.M.
        • Noel M.W.
        • et al.
        Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation.
        Cancer Res. 2005; 65: 2353-2363
        • Shih I.M.
        • Wang T.L.
        Notch signaling, gamma-secretase inhibitors, and cancer therapy.
        Cancer Res. 2007; 67: 1879-1882
        • Marks P.A.
        • Xu W.S.
        Histone deacetylase inhibitors: Potential in cancer therapy.
        J Cell Biochem. 2009; 107: 600-608
        • Furchert S.E.
        • Lanvers-Kaminsky C.
        • Juurgens H.
        • et al.
        Inhibitors of histone deacetylases as potential therapeutic tools for high-risk embryonal tumors of the nervous system of childhood.
        Int J Cancer. 2007; 120: 1787-1794
        • Spiller S.E.
        • Ditzler S.H.
        • Pullar B.J.
        • Olson J.M.
        Response of preclinical medulloblastoma models to combination therapy with 13-cis retinoic acid and suberoylanilide hydroxamic acid (SAHA).
        J Neurooncol. 2008; 87: 133-141
        • Yin D.
        • Ong J.M.
        • Hu J.
        • et al.
        Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor: Effects on gene expression and growth of glioma cells in vitro and in vivo.
        Clin Cancer Res. 2007; 13: 1045-1052
        • Fouladi M.
        • Park J.R.
        • Stewart C.F.
        • et al.
        Pediatric phase I trial and pharmacokinetic study of vorinostat: A Children’s Oncology Group phase I consortium report.
        J Clin Oncol. 2010; 28: 3623-3629
        • Wolff J.E.
        • Kramm C.
        • Kortmann R.D.
        • et al.
        Valproic acid was well tolerated in heavily pretreated pediatric patients with high-grade glioma.
        J Neurooncol. 2008; 90: 309-314
        • Su J.M.
        • Li X.N.
        • Thompson P.
        • et al.
        Phase 1 study of valproic acid in pediatric patients with refractory solid or CNS tumors: A Children’s Oncology Group report.
        Clin Cancer Res. 2011; 17: 589-597
        • Masoudi A.
        • Elopre M.
        • Amini E.
        • et al.
        Influence of valproic acid on outcome of high-grade gliomas in children.
        Anticancer Res. 2008; 28: 2437-2442
        • Graham C.
        • Tucker C.
        • Creech J.
        • et al.
        Evaluation of the antitumor efficacy, pharmacokinetics, and pharmacodynamics of the histone deacetylase inhibitor depsipeptide in childhood cancer models in vivo.
        Clin Cancer Res. 2006; 12: 223-234
        • Ferris R.L.
        • Jaffee E.M.
        • Ferrone S.
        Tumor antigen-targeted, monoclonal antibody-based immunotherapy: Clinical response, cellular immunity, and immunoescape.
        J Clin Oncol. 2010; 28: 4390-4399
        • Zhu Z.
        • Shen Z.
        Targeting the inflammatory pathways to enhance chemotherapy of cancer.
        Cancer Biol Ther. 2011; 12: 3
        • Okada H.
        • Low K.L.
        • Kohanbash G.
        • McDonald H.A.
        • Hamilton R.L.
        • Pollack I.F.
        Expression of glioma-associated antigens in pediatric brain stem and non-brain stem gliomas.
        J Neurooncol. 2008; 88: 245-250
        • Curtin J.F.
        • King G.D.
        • Candolfi M.
        • et al.
        Combining cytotoxic and immune-mediated gene therapy to treat brain tumors.
        Curr Top Med Chem. 2005; 5: 1151-1170
        • Parsa A.
        • Han C.C.S.
        • Kivett V.
        • et al.
        Autologous heat shock protein vaccine (HSPPC-96) for patients with recurrent glioblastoma (GBM): Results of a phase II multicenter clinical trial with immunological assessments.
        J Clin Oncol. 2011; 29: 2565
        • Okada H.
        • Kalinski P.
        • Ueda R.
        • et al.
        Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma.
        J Clin Oncol. 2011; 29: 330-336