Advertisement

Emerging Treatments in the Management of Tuberous Sclerosis Complex

  • Michael H. Kohrman
    Correspondence
    Communications should be addressed to: Dr. Kohrman; Department of Pediatrics; Comer Children’s Hospital, University of Chicago; 5841 South Maryland Avenue, MC 3055; Chicago, IL 60637.
    Affiliations
    Department of Pediatrics, Comer Children’s Hospital, University of Chicago, Chicago, Illinois
    Search for articles by this author

      Abstract

      Tuberous sclerosis complex is a genetic disorder characterized by the formation of nonmalignant hamartomas in the brain, heart, skin, kidney, lung, and other organs. It is associated with autism, epilepsy, and other neurocognitive and behavioral disabilities. Wide phenotypic variation occurs in disease severity and natural course: some patients demonstrate minimal effects, e.g., skin changes; others manifest profound seizures and mental retardation. Tuberous sclerosis complex is caused by mutations in either the tuberous sclerosis complex 1 or 2 gene (coding for hamartin and tuberin, respectively). The tuberous sclerosis complex 1/tuberous sclerosis complex 2 protein dimer complex is a crucial inhibitory element in the mammalian target of rapamycin pathway, regulating cell growth and proliferation. Until recently, few options existed, other than surgery, for treating symptoms of tuberous sclerosis complex related to the growth of hamartomas. Increased understanding of the genetic cause of the disease and underlying dysregulation of the mammalian target of rapamycin pathway has led to clinical trials of mammalian target of rapamycin inhibitors, including sirolimus and everolimus. This review gives an overview of tuberous sclerosis complex and its molecular causes, and summarizes results from recent clinical trials of mammalian target of rapamycin inhibitors in patients with the disease.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Pediatric Neurology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Jansen F.E.
        • van Nieuwenhuizen O.
        • van Huffelen A.C.
        Tuberous sclerosis complex and its founders.
        J Neurol Neurosurg Psychiatry. 2004; 75: 770
        • Baskin Jr., H.J.
        The pathogenesis and imaging of the tuberous sclerosis complex.
        Pediatr Radiol. 2008; 38: 936-952
        • Curatolo P.
        • Bombardieri R.
        • Jozwiak S.
        Tuberous sclerosis.
        Lancet. 2008; 372: 657-668
        • Holmes G.L.
        • Stafstrom C.E.
        Tuberous sclerosis complex and epilepsy: Recent developments and future challenges.
        Epilepsia. 2007; 48: 617-630
        • Crino P.B.
        • Nathanson K.L.
        • Henske E.P.
        The tuberous sclerosis complex.
        N Engl J Med. 2006; 355: 1345-1356
        • Roach E.S.
        • Gomez M.R.
        • Northrup H.
        Tuberous sclerosis complex consensus conference: Revised clinical diagnostic criteria.
        J Child Neurol. 1998; 13: 624-628
        • DiMario Jr., F.J.
        Brain abnormalities in tuberous sclerosis complex.
        J Child Neurol. 2004; 19: 650-657
        • Franz D.N.
        • Bissler J.J.
        • McCormack F.X.
        Tuberous sclerosis complex: Neurological, renal, and pulmonary manifestations.
        Neuropediatrics. 2010; 41: 199-208
        • Wong M.
        Mechanisms of epileptogenesis in tuberous sclerosis complex and related malformations of cortical development with abnormal glioneuronal proliferation.
        Epilepsia. 2008; 49: 8-21
        • Bolton P.F.
        • Park R.J.
        • Higgins J.N.
        • Griffiths P.D.
        • Pickles A.
        Neuro-epileptic determinants of autism spectrum disorders in tuberous sclerosis complex.
        Brain. 2002; 125: 1247-1255
        • de Vries P.J.
        Targeted treatments for cognitive and neurodevelopmental disorders in tuberous sclerosis complex.
        Neurotherapeutics. 2010; 7: 275-282
        • Krishnan M.L.
        • Commowick O.
        • Jeste S.S.
        • et al.
        Diffusion features of white matter in tuberous sclerosis with tractography.
        Pediatr Neurol. 2010; 42: 101-106
        • Orlova K.A.
        • Crino P.B.
        The tuberous sclerosis complex.
        Ann NY Acad Sci. 2010; 1184: 87-105
        • Rakowski S.K.
        • Winterkorn E.B.
        • Paul E.
        • Steele D.J.
        • Halpern E.F.
        • Thiele E.A.
        Renal manifestations of tuberous sclerosis complex: Incidence, prognosis, and predictive factors.
        Kidney Int. 2006; 70: 1777-1782
        • Longa L.
        • Scolari F.
        • Brusco A.
        • et al.
        A large TSC2 and PKD1 gene deletion is associated with renal and extrarenal signs of autosomal dominant polycystic kidney disease.
        Nephrol Dial Transplant. 1997; 12: 1900-1907
        • Boletta A.
        Emerging evidence of a link between the polycystins and the mTOR pathways.
        Pathogenetics. 2009; 2: 6
        • Henske E.P.
        Tuberous sclerosis and the kidney: From mesenchyme to epithelium, and beyond.
        Pediatr Nephrol. 2005; 20: 854-857
        • Franz D.N.
        • Brody A.
        • Meyer C.
        • et al.
        Mutational and radiographic analysis of pulmonary disease consistent with lymphangioleiomyomatosis and micronodular pneumocyte hyperplasia in women with tuberous sclerosis.
        Am J Respir Crit Care Med. 2001; 164: 661-668
        • Yu J.J.
        • Robb V.A.
        • Morrison T.A.
        • et al.
        Estrogen promotes the survival and pulmonary metastasis of tuberin-null cells.
        Proc Natl Acad Sci USA. 2009; 106: 2635-2640
        • McCormack F.X.
        • Inoue Y.
        • Moss J.
        • et al.
        Efficacy and safety of sirolimus in lymphangioleiomyomatosis.
        N Engl J Med. 2011; 364: 1595-1606
        • Franz D.N.
        Non-neurologic manifestations of tuberous sclerosis complex.
        J Child Neurol. 2004; 19: 690-698
        • Borkowska J.
        • Schwartz R.A.
        • Kotulska K.
        • Jozwiak S.
        Tuberous sclerosis complex: Tumors and tumorigenesis.
        Int J Dermatol. 2011; 50: 13-20
        • Datta A.N.
        • Hahn C.D.
        • Sahin M.
        Clinical presentation and diagnosis of tuberous sclerosis complex in infancy.
        J Child Neurol. 2008; 23: 268-273
        • Nelson C.P.
        • Sanda M.G.
        Contemporary diagnosis and management of renal angiomyolipoma.
        J Urol. 2002; 168: 1315-1325
        • Fryer A.E.
        • Chalmers A.
        • Connor J.M.
        • et al.
        Evidence that the gene for tuberous sclerosis is on chromosome 9.
        Lancet. 1987; 1: 659-661
        • Kandt R.S.
        • Haines J.L.
        • Smith M.
        • et al.
        Linkage of an important gene locus for tuberous sclerosis to a chromosome 16 marker for polycystic kidney disease.
        Nat Genet. 1992; 2: 37-41
        • European Chromosome 16 Tuberous Sclerosis Consortium
        Identification and characterization of the tuberous sclerosis gene on chromosome 16.
        Cell. 1993; 75: 1305-1315
        • van Slegtenhorst M.
        • de Hoogt R.
        • Hermans C.
        • et al.
        Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34.
        Science. 1997; 277: 805-808
        • Au K.S.
        • Williams A.T.
        • Gambello M.J.
        • Northrup H.
        Molecular genetic basis of tuberous sclerosis complex: From bench to bedside.
        J Child Neurol. 2004; 19: 699-709
        • Napolioni V.
        • Moavero R.
        • Curatolo P.
        Recent advances in neurobiology of tuberous sclerosis complex.
        Brain Dev. 2009; 31: 104-113
        • Sancak O.
        • Nellist M.
        • Goedbloed M.
        • et al.
        Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: Genotype-phenotype correlations and comparison of diagnostic DNA techniques in tuberous sclerosis complex.
        Eur J Hum Genet. 2005; 13: 731-741
        • Jentarra G.M.
        • Rice S.G.
        • Olfers S.
        • Saffen D.
        • Narayanan V.
        Evidence for population variation in TSC1 and TSC2 gene expression.
        BMC Med Genet. 2011; 12: 29
        • Hay N.
        • Sonenberg N.
        Upstream and downstream of mTOR.
        Genes Dev. 2004; 18: 1926-1945
        • Brugarolas J.
        • Lei K.
        • Hurley R.L.
        • et al.
        Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex.
        Genes Dev. 2004; 18: 2893-2904
        • Kwiatkowski D.J.
        • Manning B.D.
        Tuberous sclerosis: A GAP at the crossroads of multiple signaling pathways.
        Hum Mol Genet. 2005; 14: R251-R258
        • Wang X.
        • Proud C.G.
        The mTOR pathway in the control of protein synthesis.
        Physiology. 2006; 21: 362-369
        • Ellisen L.W.
        Growth control under stress: mTOR regulation through the REDD1-TSC pathway.
        Cell Cycle. 2005; 4: 1500-1502
        • Huang J.
        • Manning B.D.
        The TSC1-TSC2 complex: A molecular switchboard controlling cell growth.
        Biochem J. 2008; 412: 179-190
        • LoPiccolo J.
        • Blumenthal G.M.
        • Bernstein W.B.
        • Dennis P.A.
        Targeting the PI3K/Akt/mTOR pathway: Effective combinations and clinical considerations.
        Drug Resist Update. 2008; 11: 32-50
        • Swiech L.
        • Perycz M.
        • Malik A.
        • Jaworski J.
        Role of mTOR in physiology and pathology of the nervous system.
        Biochim Biophys Acta. 2008; 1784: 116-132
        • de Vries P.J.
        • Howe C.J.
        The tuberous sclerosis complex proteins: A GRIPP on cognition and neurodevelopment.
        Trends Mol Med. 2007; 13: 319-326
        • Chan J.A.
        • Zang H.
        Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: Biallelic inactivation of TSC1 or TSC2 leads to mTOR activation.
        J Neuropathol Exp Neurol. 2004; 63: 1236-1242
        • Moavero R.
        • Cerminara C.
        • Curatolo P.
        Epilepsy secondary to tuberous sclerosis: Lessons learned and current challenges.
        Childs Nerv Syst. 2010; 26: 1495-1504
        • Sampson J.R.
        Therapeutic targeting of mTOR in tuberous sclerosis.
        Biochem Soc Trans. 2009; 37: 259-264
        • Chapuis N.
        • Tamburini J.
        • Green A.S.
        • et al.
        Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies.
        Leukemia. 2010; 24: 1686-1699
        • Hess G.
        • Herbrecht R.
        • Romaguera J.
        • et al.
        Phase III study to evaluate temsirolimus compared with investigator’s choice therapy for the treatment of relapsed or refractory mantle cell lymphoma.
        J Clin Oncol. 2009; 27: 3822-3829
        • Gabardi S.
        • Baroletti S.A.
        Everolimus: A proliferation signal inhibitor with clinical applications in organ transplantation, oncology, and cardiology.
        Pharmacotherapy. 2010; 30: 1044-1056
        • Krueger D.A.
        • Care M.M.
        • Holland K.
        • et al.
        Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis.
        N Engl J Med. 2010; 363: 1801-1811
        • Nabbout R.
        • Santos M.
        • Rolland Y.
        • Delalande O.
        • Dulac O.
        • Chiron C.
        Early diagnosis of subependymal giant cell astrocytoma in children with tuberous sclerosis.
        J Neurol Neurosurg Psychiatry. 1999; 66: 370-375
        • Bissler J.J.
        • McCormack F.X.
        • Young L.R.
        • et al.
        Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis.
        N Engl J Med. 2008; 358: 140-151
      1. ClinicalTrials.gov. www.clinicaltrials.gov. Accessed February 2, 2012.

        • Franz D.N.
        • Leonard J.
        • Tudor C.
        • et al.
        Rapamycin causes regression of astrocytomas in tuberous sclerosis complex.
        Ann Neurol. 2006; 59: 490-498
        • Koenig M.K.
        • Butler I.J.
        • Northrup H.
        Regression of subependymal giant cell astrocytoma with rapamycin in tuberous sclerosis complex.
        J Child Neurol. 2008; 23: 1238-1239
        • Birca A.
        • Mercier C.
        • Major P.
        Rapamycin as an alternative to surgical treatment of subependymal giant cell astrocytomas in a patient with tuberous sclerosis complex.
        J Neurosurg Pediatr. 2010; 6: 381-384
        • Lam C.
        • Bouffet E.
        • Tabori U.
        • Mabbott D.
        • Taylor M.
        • Bartels U.
        Rapamycin (sirolimus) in tuberous sclerosis associated pediatric central nervous system tumors.
        Pediatr Blood Cancer. 2010; 54: 476-479
        • Jozwiak J.
        • Jozwiak S.
        • Oldak M.
        Molecular activity of sirolimus and its possible application in tuberous sclerosis treatment.
        Med Res Rev. 2006; 26: 160-180
        • Yalon M.
        • Ben-Sira L.
        • Constantini S.
        • Toren A.
        Regression of subependymal giant cell astrocytomas with RAD001 (everolimus) in tuberous sclerosis complex.
        Childs Nerv Syst. 2011; 27: 179-181
      2. Afinitor® (everolimus) tablets for oral administration [prescribing information].
        Novartis Pharmaceuticals Corporation, East Hanover, NJ2011
        • Wong M.
        Mammalian target of rapamycin (mTOR) inhibition as a potential antiepileptogenic therapy: From tuberous sclerosis to common acquired epilepsies.
        Epilepsia. 2010; 51: 27-36
        • Ehninger D.
        • de Vries P.J.
        • Silva A.J.
        From mTOR to cognition: Molecular and cellular mechanisms of cognitive impairments in tuberous sclerosis.
        J Intellect Disabil Res. 2009; 53: 838-851
        • Ehninger D.
        • Silva A.J.
        Rapamycin for treating tuberous sclerosis and autism spectrum disorders.
        Trends Mol Med. 2011; 17: 78-87
        • Ehninger D.
        • Han S.
        • Shilyansky C.
        • et al.
        Reversal of learning deficits in a TSC2+/− mouse model of tuberous sclerosis.
        Nat Med. 2008; 14: 843-848
        • Zeng L.H.
        • Xu L.
        • Gutmann D.H.
        • Wong M.
        Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex.
        Ann Neurol. 2008; 63: 444-453
        • Sooriakumaran P.
        • Gibbs P.
        • Coughlin G.
        • et al.
        Angiomyolipomata: Challenges, solutions, and future prospects based on over 100 cases treated.
        BJU Int. 2010; 105: 101-106
        • Ewalt D.H.
        • Diamond N.
        • Rees C.
        • et al.
        Long-term outcome of transcatheter embolization of renal angiomyolipomas due to tuberous sclerosis complex.
        J Urol. 2005; 174: 1764-1766
        • Wienecke R.
        • Fackler I.
        • Linsenmaier U.
        • Mayer K.
        • Licht T.
        • Kretzler M.
        Antitumoral activity of rapamycin in renal angiomyolipoma associated with tuberous sclerosis complex.
        Am J Kidney Dis. 2006; 48: e27-e29
        • Peces R.
        • Peces C.
        • Cuesta-Lopez E.
        • et al.
        Low-dose rapamycin reduces kidney volume angiomyolipomas and prevents the loss of renal function in a patient with tuberous sclerosis complex.
        Nephrol Dial Transplant. 2010; 25: 3787-3791
        • Krischock L.
        • Beach R.
        • Taylor J.
        Sirolimus and tuberous sclerosis-associated renal angiomyolipomas.
        Arch Dis Child. 2010; 95: 391-392