Advertisement

Modeling Developmental Plasticity After Perinatal Stroke: Defining Central Therapeutic Targets in Cerebral Palsy

  • Adam Kirton
    Correspondence
    Communications should be addressed to: Dr. Kirton; Division of Neurology; Alberta Children’s Hospital; 2888 Shaganappi Trail NW; Calgary, Alberta T3B 6A8, Canada.
    Affiliations
    Calgary Pediatric Stroke Program, Alberta Children’s Hospital Research Institute, and Section of Neurology, Department of Pediatrics and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
    Search for articles by this author

      Abstract

      Perinatal stroke is presented as the ideal human model of developmental neuroplasticity. The precise timing, mechanisms, and locations of specific perinatal stroke diseases provide common examples of well defined, focal, perinatal brain injuries. Motor disability (hemiparetic cerebral palsy) constitutes the primary adverse outcome and the focus of models explaining how motor systems develop in health and after early injury. Combining basic science animal work with human applied technology (functional magnetic resonance imaging, diffusion tensor imaging, and transcranial magnetic stimulation), a model of plastic motor development after perinatal stroke is presented. Potential central therapeutic targets are revealed. The means to measure and modulate these targets, including evidence-based rehabilitation therapies and noninvasive brain stimulation, are suggested. Implications for clinical trials and future directions are discussed.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Pediatric Neurology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Mineyko A.
        • Kirton A.
        The black box of perinatal ischemic stroke pathogenesis.
        J Child Neurol. 2011; 26: 1154-1162
        • Nelson K.B.
        Perinatal ischemic stroke.
        Stroke. 2007; 38: 742-745
        • Petty G.W.
        • Brown Jr., R.D.
        • Whisnant J.P.
        • Sicks J.D.
        • O’Fallon W.M.
        • Wiebers D.O.
        Ischemic stroke subtypes: A population-based study of incidence and risk factors.
        Stroke. 1999; 30: 2513-2516
        • Raju T.N.
        • Nelson K.B.
        • Ferriero D.
        • Lynch J.K.
        Ischemic perinatal stroke: Summary of a workshop sponsored by the National Institute of Child Health and Human Development and the National Institute of Neurological Disorders and Stroke.
        Pediatrics. 2007; 120: 609-616
        • deVeber G.
        • MacGregor D.
        • Curtis R.
        • et al.
        Neurological outcome in survivors of neonatal arterial ischemic stroke.
        Pediatr Res. 2003; 53: 537A
        • Sreenan C.
        • Bhargava R.
        • Robertson C.M.
        Cerebral infarction in the term newborn: Clinical presentation and long-term outcome.
        J Pediatr. 2000; 137: 351-355
        • Mercuri E.
        • Cowan F.
        • Gupte G.
        • et al.
        Prothrombotic disorders and abnormal neurodevelopmental outcome in infants with neonatal cerebral infarction.
        Pediatrics. 2001; 107: 1400-1404
        • Kirton A.
        • deVeber G.
        Advances in perinatal ischemic stroke.
        Pediatr Neurol. 2009; 40: 205-214
        • Kirton A.
        • deVeber G.
        • Pontigon A.M.
        • MacGregor D.
        • Shroff M.
        Presumed perinatal ischemic stroke: Vascular classification predicts outcomes.
        Ann Neurol. 2008; 63: 436-443
        • Domi T.
        • deVeber G.
        • Shroff M.
        • Kouzmitcheva E.
        • MacGregor D.L.
        • Kirton A.
        Corticospinal tract pre-Wallerian degeneration: A novel outcome predictor for pediatric stroke on acute MRI.
        Stroke. 2009; 40: 780-787
        • Kirton A.
        • Shroff M.
        • Pontigon A.M.
        • deVeber G.
        Risk factors and presentations of periventricular venous infarction vs. arterial presumed perinatal ischemic stroke.
        Arch Neurol. 2010; 67: 842-848
        • Tan M.
        • deVeber G.
        • Shroff M.
        • et al.
        Sagittal sinus compression is associated with neonatal cerebral sinovenous thrombosis.
        Pediatrics. 2011; 128: e429-e435
        • Rajapakse T.
        • deVeber G.
        • Wei X.
        • Kirton A.
        Diffusion imaging of acute cerebral diaschisis in neonatal arterial ischemic stroke.
        Ann Neurol. 2009; 66: S145-S146
        • Lama S.
        • Qiao M.
        • Kirton A.
        • et al.
        Imaging corticospinal degeneration in neonatal rats with unilateral cerebral infarction.
        Exp Neurol. 2011; 228: 192-199
        • Tan M.A.
        • Miller E.
        • Shroff M.M.
        • Deveber G.A.
        • Kirton A.
        Alleviation of neonatal sinovenous compression to enhance neonatal cerebral venous blood flow.
        J Child Neurol. 2012 Jul 17; (Epub ahead of print)
        • Eyre J.A.
        • Smith M.
        • Dabydeen L.
        • et al.
        Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system?.
        Ann Neurol. 2007; 62: 493-503
        • Trauner D.A.
        • Chase C.
        • Walker P.
        • Wulfeck B.
        Neurologic profiles of infants and children after perinatal stroke.
        Pediatr Neurol. 1993; 9: 383-386
        • Golomb M.R.
        • MacGregor D.L.
        • Domi T.
        • et al.
        Presumed pre- or perinatal arterial ischemic stroke: Risk factors and outcomes.
        Ann Neurol. 2001; 50: 163-168
        • Kirton A.
        • deVeber G.
        Perinatal ischemic stroke.
        Stroke Rev. 2006; 10: 38-47
        • Wu Y.W.
        • March W.M.
        • Croen L.A.
        • Grether J.K.
        • Escobar G.J.
        • Newman T.B.
        Perinatal stroke in children with motor impairment: A population-based study.
        Pediatrics. 2004; 114: 612-619
        • Govaert P.
        • Matthys E.
        • Zecic A.
        • Roelens F.
        • Oostra A.
        • Vanzieleghem B.
        Perinatal cortical infarction within middle cerebral artery trunks.
        Arch Dis Child Fetal Neonatal Ed. 2000; 82: F59-F63
        • de Vries L.S.
        • Groenendaal F.
        • Eken P.
        • van Haastert I.C.
        • Rademaker K.J.
        • Meiners L.C.
        Infarcts in the vascular distribution of the middle cerebral artery in preterm and fullterm infants.
        Neuropediatrics. 1997; 28: 88-96
        • Abels L.
        • Lequin M.
        • Govaert P.
        Sonographic templates of newborn perforator stroke.
        Pediatr Radiol. 2006; 36: 663-669
        • de Vries L.S.
        • Roelants-van Rijn A.M.
        • Rademaker K.J.
        • van Haastert I.C.
        • Beek F.J.
        • Groenendaal F.
        Unilateral parenchymal haemorrhagic infarction in the preterm infant.
        Eur J Paediatr Neurol. 2001; 5: 139-149
        • de Vries L.S.
        • Rademaker K.J.
        • Groenendaal F.
        • et al.
        Correlation between neonatal cranial ultrasound, MRI in infancy and neurodevelopmental outcome in infants with a large intraventricular haemorrhage with or without unilateral parenchymal involvement.
        Neuropediatrics. 1998; 29: 180-188
        • Ghi T.
        • Simonazzi G.
        • Perolo A.
        • et al.
        Outcome of antenatally diagnosed intracranial hemorrhage: Case series and review of the literature.
        Ultrasound Obstet Gynecol. 2003; 22: 121-130
        • Elchalal U.
        • Yagel S.
        • Gomori J.M.
        • et al.
        Fetal intracranial hemorrhage (fetal stroke): Does grade matter?.
        Ultrasound Obstet Gynecol. 2005; 26: 233-243
        • Takanashi J.
        • Barkovich A.J.
        • Ferriero D.M.
        • Suzuki H.
        • Kohno Y.
        Widening spectrum of congenital hemiplegia: Periventricular venous infarction in term neonates.
        Neurology. 2003; 61: 531-533
        • Takanashi J.
        • Tada H.
        • Barkovich A.J.
        • Kohno Y.
        Magnetic resonance imaging confirms periventricular venous infarction in a term-born child with congenital hemiplegia.
        Dev Med Child Neurol. 2005; 47: 706-708
        • Kirton A.
        • Wei X.
        Teaching neuroimages: Confirmation of prenatal periventricular venous infarction with susceptibility-weighted MRI.
        Neurology. 2010; 74: e48
        • Cohen M.E.
        • Duffner P.K.
        Prognostic indicators in hemiparetic cerebral palsy.
        Ann Neurol. 1981; 9: 353-357
        • Wiklund L.M.
        • Uvebrant P.
        • Flodmark O.
        Morphology of cerebral lesions in children with congenital hemiplegia: A study with computed tomography.
        Neuroradiology. 1990; 32: 179-186
        • Wu Y.W.
        • Lindan C.E.
        • Henning L.H.
        • et al.
        Neuroimaging abnormalities in infants with congenital hemiparesis.
        Pediatr Neurol. 2006; 35: 191-196
        • Li D.
        • Hodge J.
        • Wei X.C.
        • Kirton A.
        Reduced ipsilesional cortical volumes in fetal periventricular venous infarction.
        Stroke. 2012;
        • deVeber G.
        • Andrew M.
        • Canadian Pediatric Ischemic Stroke Study Group
        Cerebral sinovenous thrombosis in children.
        N Engl J Med. 2001; 345: 417-423
        • Fitzgerald K.C.
        • Williams L.S.
        • Garg B.P.
        • Carvalho K.S.
        • Golomb M.R.
        Cerebral sinovenous thrombosis in the neonate.
        Arch Neurol. 2006; 63: 405-409
        • Lee J.
        • Croen L.A.
        • Lindan C.
        • et al.
        Predictors of outcome in perinatal arterial stroke: A population-based study.
        Ann Neurol. 2005; 58: 303-308
        • Mercuri E.
        • Barnett A.
        • Rutherford M.
        • et al.
        Neonatal cerebral infarction and neuromotor outcome at school age.
        Pediatrics. 2004; 113: 95-100
        • Mercuri E.
        • Rutherford M.
        • Cowan F.
        • et al.
        Early prognostic indicators of outcome in infants with neonatal cerebral infarction: A clinical, electroencephalogram, and magnetic resonance imaging study.
        Pediatrics. 1999; 103: 39-46
        • Hagberg B.
        • Hagberg G.
        • Beckung E.
        • Uvebrant P.
        Changing panorama of cerebral palsy in Sweden: VIII. Prevalence and origin in the birth year period 1991–94.
        Acta Paediatr Scand. 2001; 90: 271-277
        • Nelson K.B.
        • Lynch J.K.
        Stroke in newborn infants.
        Lancet Neurol. 2004; 3: 150-158
        • Mercuri E.
        • Jongmans M.
        • Bouza H.
        • et al.
        Congenital hemiplegia in children at school age: Assessment of hand function in the non-hemiplegic hand and correlation with MRI.
        Neuropediatrics. 1999; 30: 8-13
        • Goldenberg N.A.
        • Knapp-Clevenger R.
        • Manco-Johnson M.J.
        Elevated plasma factor VIII and D-dimer levels as predictors of poor outcomes of thrombosis in children.
        N Engl J Med. 2004; 351: 1081-1088
        • Mercuri E.
        • Anker S.
        • Guzzetta A.
        • et al.
        Neonatal cerebral infarction and visual function at school age.
        Arch Dis Child Fetal Neonatal Ed. 2003; 88: F487-F491
        • Boardman J.P.
        • Ganesan V.
        • Rutherford M.A.
        • Saunders D.E.
        • Mercuri E.
        • Cowan F.
        Magnetic resonance image correlates of hemiparesis after neonatal and childhood middle cerebral artery stroke.
        Pediatrics. 2005; 115: 321-326
        • Ganesan V.
        • Ng V.
        • Chong W.K.
        • Kirkham F.J.
        • Connelly A.
        Lesion volume, lesion location, and outcome after middle cerebral artery territory stroke.
        Arch Dis Child. 1999; 81: 295-300
        • de Vries L.S.
        • Van der Grond J.
        • van Haastert I.C.
        • Groenendaal F.
        Prediction of outcome in new-born infants with arterial ischaemic stroke using diffusion-weighted magnetic resonance imaging.
        Neuropediatrics. 2005; 36: 12-20
        • Kirton A.
        • Shroff M.
        • Visvanathan T.
        • deVeber G.
        Quantified corticospinal tract diffusion restriction predicts neonatal stroke outcome.
        Stroke. 2007; 38: 974-980
        • Lynch J.K.
        Cerebrovascular disorders in children.
        Curr Neurol Neurosci Rep. 2004; 4: 129-138
        • Westmacott R.
        • MacGregor D.
        • Askalan R.
        • deVeber G.
        Late emergence of cognitive deficits after unilateral neonatal stroke.
        Stroke. 2009; 40: 2012-2019
        • World Health Organization
        International classification of functioning, disability and health (ICF).
        World Health Organization, Geneva2001
        • Greaves S.
        • Imms C.
        • Dodd K.
        • Krumlinde-Sundholm L.
        Assessing bimanual performance in young children with hemiplegic cerebral palsy: A systematic review.
        Dev Med Child Neurol. 2010; 52: 413-421
        • Krumlinde-Sundholm L.
        • Holmefur M.
        • Kottorp A.
        • Eliasson A.C.
        The Assisting Hand Assessment: Current evidence of validity, reliability, and responsiveness to change.
        Dev Med Child Neurol. 2007; 49: 259-264
        • Holmefur M.
        • Aarts P.
        • Hoare B.
        • Krumlinde-Sundholm L.
        Test-retest and alternate forms reliability of the Assisting Hand Assessment.
        J Rehabil Med. 2009; 41: 886-891
        • Eliasson A.C.
        • Krumlinde-Sundholm L.
        • Shaw K.
        • Wang C.
        Effects of constraint-induced movement therapy in young children with hemiplegic cerebral palsy: An adapted model.
        Dev Med Child Neurol. 2005; 47: 266-275
        • Eliasson A.C.
        • Shaw K.
        • Ponten E.
        • Boyd R.
        • Krumlinde-Sundholm L.
        Feasibility of a day-camp model of modified constraint-induced movement therapy with and without botulinum toxin A injection for children with hemiplegia.
        Phys Occup Ther Pediatr. 2009; 29: 311-333
        • Sakzewski L.
        • Ziviani J.
        • Boyd R.N.
        Best responders after intensive upper-limb training for children with unilateral cerebral palsy.
        Arch Phys Med Rehabil. 2011; 92: 578-584
        • Gordon A.M.
        • Hung Y.C.
        • Brandao M.
        • et al.
        Bimanual training and constraint-induced movement therapy in children with hemiplegic cerebral palsy: A randomized trial.
        Neurorehabil Neural Repair. 2011; 25: 692-702
        • Law M.
        • Baptiste S.
        • McColl M.
        • Opzoomer A.
        • Polatajko H.
        • Pollock N.
        The Canadian Occupational Performance Measure: An outcome measure for occupational therapy.
        Can J Occup Ther. 1990; 57: 82-87
        • Carswell A.
        • McColl M.A.
        • Baptiste S.
        • Law M.
        • Polatajko H.
        • Pollock N.
        The Canadian Occupational Performance Measure: A research and clinical literature review.
        Can J Occup Ther. 2004; 71: 210-222
        • Hanna K.
        • Rodger S.
        Towards family-centred practice in paediatric occupational therapy: A review of the literature on parent-therapist collaboration.
        Aust Occup Ther J. 2002; 49: 14-24
        • Hoare B.
        • Imms C.
        • Carey L.
        • Wasiak J.
        Constraint-induced movement therapy in the treatment of the upper limb in children with hemiplegic cerebral palsy: A Cochrane systematic review.
        Clin Rehabil. 2007; 21: 675-685
        • Wallen M.
        • Ziviani J.
        • Herbert R.
        • Evans R.
        • Novak I.
        Modified constraint-induced therapy for children with hemiplegic cerebral palsy: A feasibility study.
        Dev Neurorehabil. 2008; 11: 124-133
        • Cusick A.
        • Lannin N.A.
        • Lowe K.
        Adapting the Canadian Occupational Performance Measure for use in a paediatric clinical trial.
        Disabil Rehab. 2007; 29: 761-766
        • Hager-Ross C.
        • Rosblad B.
        Norms for grip strength in children aged 4–16 years.
        Acta Paediatr Scand. 2002; 91: 617-625
        • Martin A.
        • Burtner P.A.
        • Poole J.
        • Phillips J.
        Case report: ICF-level changes in a preschooler after constraint-induced movement therapy.
        Am J Occup Ther. 2008; 62: 282-288
        • Mathiowetz V.
        • Rogers S.L.
        • Dowe-Keval M.
        • Donahoe L.
        • Rennells C.
        The Purdue Pegboard: Norms for 14- to 19-year-olds.
        Am J Occup Ther. 1986; 40: 174-179
        • Stearns G.E.
        • Burtner P.
        • Keenan K.M.
        • Qualls C.
        • Phillips J.
        Effects of constraint-induced movement therapy on hand skills and muscle recruitment of children with spastic hemiplegic cerebral palsy.
        Neurorehabilitation. 2009; 24: 95-108
        • Cusick A.
        • Vasquez M.
        • Knowles L.
        • Wallen M.
        Effect of rater training on reliability of Melbourne Assessment of Unilateral Upper Limb Function scores.
        Dev Med Child Neurol. 2005; 47: 39-45
        • Bourke-Taylor H.
        Melbourne Assessment of Unilateral Upper Limb Function: Construct validity and correlation with the Pediatric Evaluation of Disability Inventory.
        Dev Med Child Neurol. 2003; 45: 92-96
        • Kirton A.
        • Chen R.
        • Friefeld S.
        • Gunraj C.
        • Pontigon A.M.
        • deVeber G.
        Contralesional repetitive transcranial magnetic stimulation for chronic hemiparesis in subcortical paediatric stroke: A randomised trial.
        Lancet Neurol. 2008; 7: 507-513
        • Taub E.
        • Ramey S.L.
        • DeLuca S.
        • Echols K.
        Efficacy of constraint-induced movement therapy for children with cerebral palsy with asymmetric motor impairment.
        Pediatrics. 2004; 113: 305-312
        • Pirpiris M.
        • Gates P.E.
        • McCarthy J.J.
        • et al.
        Function and well-being in ambulatory children with cerebral palsy.
        J Pediatr Orthop. 2006; 26: 119-124
        • Rosenbaum P.
        The quality of life for the young adult with neurodisability: Overview and reprise.
        Dev Med Child Neurol. 2009; 51: 679-682
        • Kennard M.A.
        Age and other factors in motor recovery from precentral lesions in monkeys.
        Am J Physiol. 1936; 115: 137-146
        • Trevathan W.R.
        Introduction to evolutionary medicine.
        in: Trevathan W.R. Smith E.O. McKenna J.J. Evolutionary medicine. 1st ed. Oxford University Press, Inc., New York1999: 3-6
        • Eyre J.A.
        Corticospinal tract development and its plasticity after perinatal injury.
        Neurosci Biobehav Rev. 2007; 31: 1136-1149
        • Martin J.H.
        • Friel K.M.
        • Salimi I.
        • Chakrabarty S.
        Activity- and use-dependent plasticity of the developing corticospinal system.
        Neurosci Biobehav Rev. 2007; 31: 1125-1135
        • Werhahn K.J.
        • Conforto A.B.
        • Kadom N.
        • Hallett M.
        • Cohen L.G.
        Contribution of the ipsilateral motor cortex to recovery after chronic stroke.
        Ann Neurol. 2003; 54: 464-472
        • Foltys H.
        • Krings T.
        • Meister I.G.
        • et al.
        Motor representation in patients rapidly recovering after stroke: A functional magnetic resonance imaging and transcranial magnetic stimulation study.
        Clin Neurophysiol. 2003; 114: 2404-2415
        • Ward N.S.
        • Cohen L.G.
        Mechanisms underlying recovery of motor function after stroke.
        Arch Neurol. 2004; 61: 1844-1848
        • Calautti C.
        • Leroy F.
        • Guincestre J.Y.
        • Marie R.M.
        • Baron J.C.
        Sequential activation brain mapping after subcortical stroke: Changes in hemispheric balance and recovery.
        Neuroreport. 2001; 12: 3883-3886
        • Rossini P.M.
        • Calautti C.
        • Pauri F.
        • Baron J.C.
        Post-stroke plastic reorganisation in the adult brain.
        Lancet Neurol. 2003; 2: 493-502
        • Cioni G.
        • Montanaro D.
        • Tosetti M.
        • Canapicchi R.
        • Ghelarducci B.
        Reorganisation of the sensorimotor cortex after early focal brain lesion: A functional MRI study in monozygotic twins.
        Neuroreport. 2001; 12: 1335-1340
        • Kirton A.
        • deVeber G.
        • Gunraj C.
        • Chen R.
        Cortical excitability and interhemispheric inhibition after subcortical pediatric stroke: Plastic organization and effects of rTMS.
        Clin Neurophysiol. 2010; 121: 1922-1929
        • Berweck S.
        • Walther M.
        • Brodbeck V.
        • et al.
        Abnormal motor cortex excitability in congenital stroke.
        Pediatr Res. 2008; 63: 84-88
        • Staudt M.
        • Gerloff C.
        • Grodd W.
        • Holthausen H.
        • Niemann G.
        • Krageloh-Mann I.
        Reorganization in congenital hemiparesis acquired at different gestational ages.
        Ann Neurol. 2004; 56: 854-863
        • Staudt M.
        • Grodd W.
        • Gerloff C.
        • Erb M.
        • Stitz J.
        • Krageloh-Mann I.
        Two types of ipsilateral reorganization in congenital hemiparesis: A TMS and fMRI study.
        Brain. 2002; 125: 2222-2237
        • Juenger H.
        • Linder-Lucht M.
        • Walther M.
        • Berweck S.
        • Mall V.
        • Staudt M.
        Cortical neuromodulation by constraint-induced movement therapy in congenital hemiparesis: An fMRI study.
        Neuropediatrics. 2007; 38: 130-136
        • Walther M.
        • Juenger H.
        • Kuhnke N.
        • et al.
        Motor cortex plasticity in ischemic perinatal stroke: A transcranial magnetic stimulation and functional MRI study.
        Pediatr Neurol. 2009; 41: 171-178
        • Eyre J.A.
        • Taylor J.P.
        • Villagra F.
        • Smith M.
        • Miller S.
        Evidence of activity-dependent withdrawal of corticospinal projections during human development.
        Neurology. 2001; 57: 1543-1554
        • Kirton A.
        • Armstrong-Wells J.
        • Chang T.
        • et al.
        Symptomatic neonatal arterial ischemic stroke: The International Pediatric Stroke Study.
        Pediatrics. 2011; 128: e1402-e1410
        • Muller K.
        • Kass-Iliyya F.
        • Reitz M.
        Ontogeny of ipsilateral corticospinal projections: A developmental study with transcranial magnetic stimulation.
        Ann Neurol. 1997; 42: 705-711
        • Farmer S.F.
        • Harrison L.M.
        • Ingram D.A.
        • Stephens J.A.
        Plasticity of central motor pathways in children with hemiplegic cerebral palsy.
        Neurology. 1991; 41: 1505-1510
        • Carr L.J.
        • Harrison L.M.
        • Evans A.L.
        • Stephens J.A.
        Patterns of central motor reorganization in hemiplegic cerebral palsy.
        Brain. 1993; 116: 1223-1247
        • Maegaki Y.
        • Maeoka Y.
        • Ishii S.
        • et al.
        Mechanisms of central motor reorganization in pediatric hemiplegic patients.
        Neuropediatrics. 1997; 28: 168-174
        • Nezu A.
        • Kimura S.
        • Takeshita S.
        • Tanaka M.
        Functional recovery in hemiplegic cerebral palsy: Ipsilateral electromyographic responses to focal transcranial magnetic stimulation.
        Brain Dev. 1999; 21: 162-165
        • Vandermeeren Y.
        • Sebire G.
        • Grandin C.B.
        • Thonnard J.L.
        • Schlogel X.
        • De Volder A.G.
        Functional reorganization of brain in children affected with congenital hemiplegia: fMRI study.
        Neuroimage. 2003; 20: 289-301
        • Cao Y.
        • Vikingstad E.M.
        • Huttenlocher P.R.
        • Towle V.L.
        • Levin D.N.
        Functional magnetic resonance studies of reorganization of the human hand sensorimotor area after unilateral brain injury in the perinatal period.
        Proc Natl Acad Sci USA. 1994; 91: 9612-9616
        • Macdonell R.A.
        • Jackson G.D.
        • Curatolo J.M.
        • et al.
        Motor cortex localization using functional MRI and transcranial magnetic stimulation.
        Neurology. 1999; 53: 1462-1467
        • Nirkko A.C.
        • Rosler K.M.
        • Ozdoba C.
        • Heid O.
        • Schroth G.
        • Hess C.W.
        Human cortical plasticity: Functional recovery with mirror movements.
        Neurology. 1997; 48: 1090-1093
        • Thickbroom G.W.
        • Byrnes M.L.
        • Archer S.A.
        • Nagarajan L.
        • Mastaglia F.L.
        Differences in sensory and motor cortical organization following brain injury early in life.
        Ann Neurol. 2001; 49: 320-327
      1. Kirton A, Andersen J, Hoyt-Hallett G, et al. Measuring plastic change in pediatric interventional therapies with TMS: Methodology of the PLASTIC CHAMPS Clinical Trial. Proceedings of the First International Workshop on Synaptic Plasticity: From bench to bed side. Sicily, Italy, April 28-May 1, 2010. PS1–21.

        • Alagona G.
        • Delvaux V.
        • Gerard P.
        • et al.
        Ipsilateral motor responses to focal transcranial magnetic stimulation in healthy subjects and acute-stroke patients.
        Stroke. 2001; 32: 1304-1309
        • Kim Y.H.
        • Jang S.H.
        • Byun W.M.
        • Han B.S.
        • Lee K.H.
        • Ahn S.H.
        Ipsilateral motor pathway confirmed by combined brain mapping of a patient with hemiparetic stroke: A case report.
        Arch Phys Med Rehabil. 2004; 85: 1351-1353
        • Ragazzoni A.
        • Cincotta M.
        • Borgheresi A.
        • Zaccara G.
        • Ziemann U.
        Congenital hemiparesis: Different functional reorganization of somatosensory and motor pathways.
        Clin Neurophysiol. 2002; 113: 1273-1278
        • Rutten G.J.
        • Ramsey N.F.
        • van Rijen P.C.
        • Franssen H.
        • van Veelen C.W.
        Interhemispheric reorganization of motor hand function to the primary motor cortex predicted with functional magnetic resonance imaging and transcranial magnetic stimulation.
        J Child Neurol. 2002; 17: 292-297
        • Staudt M.
        (Re-)organization of the developing human brain following periventricular white matter lesions.
        Neurosci Biobehav Rev. 2007; 31: 1150-1156
        • Hummel F.
        • Cohen L.G.
        Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke.
        Neurorehabil Neural Repair. 2005; 19: 14-19
        • Hummel F.
        • Celnik P.
        • Giraux P.
        • et al.
        Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke.
        Brain. 2005; 128: 490-499
        • Fregni F.
        • Boggio P.S.
        • Mansur C.G.
        • et al.
        Transcranial direct current stimulation of the unaffected hemisphere in stroke patients.
        Neuroreport. 2005; 16: 1551-1555
        • Takeuchi N.
        • Tada T.
        • Toshima M.
        • Chuma T.
        • Matsuo Y.
        • Ikoma K.
        Inhibition of the unaffected motor cortex by 1 Hz repetitive transcranial magnetic stimulation enhances motor performance and training effect of the paretic hand in patients with chronic stroke.
        J Rehabil Med. 2008; 40: 298-303
        • Schambra H.M.
        • Sawaki L.
        • Cohen L.G.
        Modulation of excitability of human motor cortex (M1) by 1 Hz transcranial magnetic stimulation of the contralateral M1.
        Clin Neurophysiol. 2003; 114: 130-133
        • Pal P.K.
        • Hanajima R.
        • Gunraj C.A.
        • et al.
        Effect of low-frequency repetitive transcranial magnetic stimulation on interhemispheric inhibition.
        J Neurophysiol. 2005; 94: 1668-1675
        • Liepert J.
        • Hamzei F.
        • Weiller C.
        Motor cortex disinhibition of the unaffected hemisphere after acute stroke.
        Muscle Nerve. 2000; 23: 1761-1763
        • Murase N.
        • Duque J.
        • Mazzocchio R.
        • Cohen L.G.
        Influence of interhemispheric interactions on motor function in chronic stroke.
        Ann Neurol. 2004; 55: 400-409
        • Moll G.H.
        • Heinrich H.
        • Wischer S.
        • Tergau F.
        • Paulus W.
        • Rothenberger A.
        Motor system excitability in healthy children: Developmental aspects from transcranial magnetic stimulation.
        Electroencephalogr Clin Neurophysiol. 1999; 51: 243-249
        • Garvey M.A.
        • Ziemann U.
        • Bartko J.J.
        • Denckla M.B.
        • Barker C.A.
        • Wassermann E.M.
        Cortical correlates of neuromotor development in healthy children.
        Clin Neurophysiol. 2003; 114: 1662-1670
        • Mall V.
        • Berweck S.
        • Fietzek U.M.
        • et al.
        Low level of intracortical inhibition in children shown by transcranial magnetic stimulation.
        Neuropediatrics. 2004; 35: 120-125
        • Liepert J.
        • Restemeyer C.
        • Kucinski T.
        • Zittel S.
        • Weiller C.
        Motor strokes: The lesion location determines motor excitability changes.
        Stroke. 2005; 36: 2648-2653
        • Liepert J.
        • Storch P.
        • Fritsch A.
        • Weiller C.
        Motor cortex disinhibition in acute stroke.
        Clin Neurophysiol. 2000; 111: 671-676
        • Ziemann U.
        • Muellbacher W.
        • Hallett M.
        • Cohen L.G.
        Modulation of practice-dependent plasticity in human motor cortex.
        Brain. 2001; 124: 1171-1181
        • Ziemann U.
        • Corwell B.
        • Cohen L.G.
        Modulation of plasticity in human motor cortex after forearm ischemic nerve block.
        J Neurosci. 1998; 18: 1115-1123
        • Kirton A.
        • deVeber G.
        • Gunraj C.
        • Friefeld S.
        • Chen R.
        Cortical excitability and interhemispheric inhibition in subcortical pediatric stroke: Chronic reorganization and effects of contralesional inhibitory rTMS.
        Brain Stimul. 2008; 1: 271
        • Armand J.
        • Olivier E.
        • Edgley S.A.
        • Lemon R.N.
        Postnatal development of corticospinal projections from motor cortex to the cervical enlargement in the macaque monkey.
        J Neurosci. 1997; 17: 251-266
        • Chakrabarty S.
        • Martin J.H.
        Postnatal development of the motor representation in primary motor cortex.
        J Neurophysiol. 2000; 84: 2582-2594
        • Guzzetta A.
        • Staudt M.
        • Petacchi E.
        • et al.
        Brain representation of active and passive hand movements in children.
        Pediatr Res. 2007; 61: 485-490
        • Martin J.H.
        • Lee S.J.
        Activity-dependent competition between developing corticospinal terminations.
        Neuroreport. 1999; 10: 2277-2282
        • Martin J.H.
        • Kably B.
        • Hacking A.
        Activity-dependent development of cortical axon terminations in the spinal cord and brain stem.
        Exp Brain Res. 1999; 125: 184-199
        • Salimi I.
        • Martin J.H.
        Rescuing transient corticospinal terminations and promoting growth with corticospinal stimulation in kittens.
        J Neurosci. 2004; 24: 4952-4961
        • Scales D.A.
        • Collins G.H.
        Cerebral degeneration with hypertrophy of the contralateral pyramid.
        Arch Neurol. 1972; 26: 186-190
        • Grefkes C.
        • Fink G.R.
        Reorganization of cerebral networks after stroke: New insights from neuroimaging with connectivity approaches.
        Brain. 2011; 134: 1264-1276
        • Sarfeld A.S.
        • Diekhoff S.
        • Wang L.E.
        • et al.
        Convergence of human brain mapping tools: Neuronavigated TMS parameters and fMRI activity in the hand motor area.
        Hum Brain Mapp. 2012; 33: 1107-1123
        • Cramer S.C.
        • Sur M.
        • Dobkin B.H.
        • et al.
        Harnessing neuroplasticity for clinical applications.
        Brain. 2011; 134: 1591-1609
        • Barker A.T.
        • Jalinous R.
        • Freeston I.L.
        Non-invasive magnetic stimulation of human motor cortex.
        Lancet. 1985; 1: 1106-1107
        • Theodore W.H.
        Handbook of transcranial magnetic stimulation [book review].
        Epilepsy Behav. 2002; 3: 404
        • Jang S.H.
        • Byun W.M.
        • Chang Y.
        • Han B.S.
        • Ahn S.H.
        Combined functional magnetic resonance imaging and transcranial magnetic stimulation evidence of ipsilateral motor pathway with congenital brain disorder: A case report.
        Arch Phys Med Rehabil. 2001; 82: 1733-1736
        • Garvey M.A.
        • Gilbert D.L.
        Transcranial magnetic stimulation in children.
        Eur J Paediatr Neurol. 2004; 8: 7-19
        • Quintana H.
        Transcranial magnetic stimulation in persons younger than the age of 18.
        J ECT. 2005; 21: 88-95
        • Gilbert D.L.
        • Garvey M.A.
        • Bansal A.S.
        • Lipps T.
        • Zhang J.
        • Wassermann E.M.
        Should transcranial magnetic stimulation research in children be considered minimal risk?.
        Clin Neurophysiol. 2004; 115: 1730-1739
        • Eyre J.A.
        • Flecknell P.A.
        • Kenyon B.R.
        • Koh T.H.
        • Miller S.
        Acute effects of electromagnetic stimulation of the brain on cortical activity, cortical blood flow, blood pressure and heart rate in the cat: An evaluation of safety.
        J Neurol Neurosurg Psychiatry. 1990; 53: 507-513
        • Valero-Cabre A.
        • Rushmore R.J.
        • Payne B.R.
        Low frequency transcranial magnetic stimulation on the posterior parietal cortex induces visuotopically specific neglect-like syndrome.
        Exp Brain Res. 2006; 172: 14-21
        • Valero-Cabre A.
        • Payne B.R.
        • Rushmore J.
        • Lomber S.G.
        • Pascual-Leone A.
        Impact of repetitive transcranial magnetic stimulation of the parietal cortex on metabolic brain activity: A 14C-2DG tracing study in the cat.
        Exp Brain Res. 2005; 163: 1-12
        • Plautz E.J.
        • Barbay S.
        • Frost S.B.
        • et al.
        Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: A feasibility study in primates.
        Neurol Res. 2003; 25: 801-810
        • Wassermann E.M.
        Risk and safety of repetitive transcranial magnetic stimulation: Report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996.
        Electroencephalogr Clin Neurophysiol. 1998; 108: 1-16
        • Duque J.
        • Hummel F.
        • Celnik P.
        • Murase N.
        • Mazzocchio R.
        • Cohen L.G.
        Transcallosal inhibition in chronic subcortical stroke.
        Neuroimage. 2005; 28: 940-946
        • Takeuchi N.
        • Chuma T.
        • Matsuo Y.
        • Watanabe I.
        • Ikoma K.
        Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke.
        Stroke. 2005; 36: 2681-2686
        • Khedr E.M.
        • Ahmed M.A.
        • Fathy N.
        • Rothwell J.C.
        Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke.
        Neurology. 2005; 65: 466-468
        • Naeser M.A.
        • Martin P.I.
        • Nicholas M.
        • et al.
        Improved picture naming in chronic aphasia after TMS to part of right Broca’s area: An open-protocol study.
        Brain Lang. 2005; 93: 95-105
        • Mansur C.G.
        • Fregni F.
        • Boggio P.S.
        • et al.
        A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients.
        Neurology. 2005; 64: 1802-1804
        • Kirton A.
        • deVeber G.
        • Gunraj C.
        • Chen R.
        Neurocardiogenic syncope complicating pediatric transcranial magnetic stimulation.
        Pediatr Neurol. 2008; 39: 196-197
        • Theodore W.H.
        • Hunter K.
        • Chen R.
        • et al.
        Transcranial magnetic stimulation for the treatment of seizures: A controlled study.
        Neurology. 2002; 59: 560-562
        • Tassinari C.A.
        • Cincotta M.
        • Zaccara G.
        • Michelucci R.
        Transcranial magnetic stimulation and epilepsy.
        Clin Neurophysiol. 2003; 114: 777-798
        • Carr L.J.
        Development and reorganization of descending motor pathways in children with hemiplegic cerebral palsy.
        Acta Paediatr Scand. 1996; 416: 53-417
        • Heller S.L.
        • Heier L.A.
        • Watts R.
        • et al.
        Evidence of cerebral reorganization following perinatal stroke demonstrated with fMRI and DTI tractography.
        Clin Imag. 2005; 29: 283-287
        • Seghier M.L.
        • Lazeyras F.
        • Zimine S.
        • et al.
        Combination of event-related fMRI and diffusion tensor imaging in an infant with perinatal stroke.
        Neuroimage. 2004; 21: 463-472
        • Friston K.J.
        • Frith C.D.
        • Fletcher P.
        • Liddle P.F.
        • Frackowiak R.S.
        Functional topography: Multidimensional scaling and functional connectivity in the brain.
        Cereb Cortex. 1996; 6: 156-164
        • Stephan K.E.
        • Friston K.J.
        Analyzing effective connectivity with fMRI.
        Wiley Interdiscip Rev Cogn Sci. 2010; 1: 446-459
        • Rehme A.K.
        • Eickhoff S.B.
        • Wang L.E.
        • Fink G.R.
        • Grefkes C.
        Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke.
        Neuroimage. 2011; 55: 1147-1158
        • Carter A.R.
        • Astafiev S.V.
        • Lang C.E.
        • et al.
        Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke.
        Ann Neurol. 2010; 67: 365-375
        • de Bie H.M.
        • Boersma M.
        • Adriaanse S.
        • et al.
        Resting-state networks in awake five- to eight-year old children.
        Hum Brain Mapp. 2012; 33: 1189-1201
        • Polania R.
        • Nitsche M.A.
        • Paulus W.
        Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation.
        Hum Brain Mapp. 2011; 32: 1236-1249
        • Dong Q.
        • Welsh R.C.
        • Chenevert T.L.
        • et al.
        Clinical applications of diffusion tensor imaging.
        J Magn Reson Imag. 2004; 19: 6-18
        • Beaulieu C.
        The basis of anisotropic water diffusion in the nervous system: A technical review.
        NMR Biomed. 2002; 15: 435-455
        • Rollins N.K.
        Clinical applications of diffusion tensor imaging and tractography in children.
        Pediatr Radiol. 2007; 37: 769-780
        • Moller M.
        • Frandsen J.
        • Andersen G.
        • Gjedde A.
        • Vestergaard-Poulsen P.
        • Ostergaard L.
        Dynamic changes in corticospinal tracts after stroke detected by fibre tracking.
        J Neurol Neurosurg Psychiatry. 2007; 78: 587-592
        • Radlinska B.
        • Ghinani S.
        • Leppert I.R.
        • Minuk J.
        • Pike G.B.
        • Thiel A.
        Diffusion tensor imaging, permanent pyramidal tract damage, and outcome in subcortical stroke.
        Neurology. 2010; 75: 1048-1054
        • Yoshida S.
        • Hayakawa K.
        • Yamamoto A.
        • et al.
        Quantitative diffusion tensor tractography of the motor and sensory tract in children with cerebral palsy.
        Dev Med Child Neurol. 2010; 52: 935-940
        • Glenn O.A.
        • Ludeman N.A.
        • Berman J.I.
        • et al.
        Diffusion tensor MR imaging tractography of the pyramidal tracts correlates with clinical motor function in children with congenital hemiparesis.
        AJNR. 2007; 28: 1796-1802
      2. Hodge J, Carlson H, Goodyear B, Wei X, Kirton A. DTI quantification of corticospinal tract integrity in perinatal stroke. Proceedings of the NeuroDevNet Brain Development Conference. Vancouver, BC, Canada, June 19-21, 2011.

        • van der Aa N.E.
        • Leemans A.
        • Northington F.J.
        • et al.
        Does diffusion tensor imaging-based tractography at 3 months of age contribute to the prediction of motor outcome after perinatal arterial ischemic stroke?.
        Stroke. 2011; 42: 3410-3414
        • Taub E.
        • Crago J.E.
        • Uswatte G.
        Constraint-induced movement therapy: A new approach to treatment in physical rehabilitation.
        Rehabil Psychol. 1998; 43: 152-170
        • Taub E.
        • Uswatte G.
        • Pidikiti R.
        Constraint-induced movement therapy: A new family of techniques with broad application to physical rehabilitation: A clinical review.
        J Rehabil Res Dev. 1999; 36: 237-251
        • Taub E.
        • Uswatte G.
        • Elbert T.
        New treatments in neurorehabilitation founded on basic research.
        Nat Rev Neurosci. 2002; 3: 228-236
        • Wolf S.L.
        • Winstein C.J.
        • Miller J.P.
        • et al.
        Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: The EXCITE Randomized Clinical Trial.
        JAMA. 2006; 296: 2095-2104
        • Wolf S.L.
        • Winstein C.J.
        • Miller J.P.
        • et al.
        Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: The EXCITE Randomised Trial.
        Lancet Neurol. 2008; 7: 33-40
        • Taub E.
        • Griffin A.
        • Nick J.
        • Gammons K.
        • Uswatte G.
        • Law C.R.
        Pediatric CI therapy for stroke-induced hemiparesis in young children.
        Dev Neurorehabil. 2007; 10: 3-18
        • Willis J.K.
        • Morello A.
        • Davie A.
        • Rice J.C.
        • Bennett J.T.
        Forced use treatment of childhood hemiparesis.
        Pediatrics. 2002; 110: 94-96
        • Charles J.
        • Gordon A.M.
        Development of hand-arm bimanual intensive training (HABIT) for improving bimanual coordination in children with hemiplegic cerebral palsy.
        Dev Med Child Neurol. 2006; 48: 931-936
        • Deluca S.C.
        • Echols K.
        • Law C.R.
        • Ramey S.L.
        Intensive pediatric constraint-induced therapy for children with cerebral palsy: Randomized, controlled, crossover trial.
        J Child Neurol. 2006; 21: 931-938
        • Sung I.Y.
        • Ryu J.S.
        • Pyun S.B.
        • Yoo S.D.
        • Song W.H.
        • Park M.J.
        Efficacy of forced-use therapy in hemiplegic cerebral palsy.
        Arch Phys Med Rehabil. 2005; 86: 2195-2198
        • Sakzewski L.
        • Ziviani J.
        • Boyd R.
        Systematic review and meta-analysis of therapeutic management of upper-limb dysfunction in children with congenital hemiplegia.
        Pediatrics. 2009; 123: e1111-e1122
        • Brady K.
        • Garcia T.
        Constraint-induced movement therapy (CIMT): Pediatric applications.
        Dev Disabil Res Rev. 2009; 15: 102-111
        • Liepert J.
        • Bauder H.
        • Wolfgang H.R.
        • Miltner W.H.
        • Taub E.
        • Weiller C.
        Treatment-induced cortical reorganization after stroke in humans.
        Stroke. 2000; 31: 1210-1216
        • Schaechter J.D.
        • Kraft E.
        • Hilliard T.S.
        • et al.
        Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: A preliminary study.
        Neurorehabil Neural Repair. 2002; 16: 326-338
        • Wittenberg G.F.
        • Chen R.
        • Ishii K.
        • et al.
        Constraint-induced therapy in stroke: Magnetic-stimulation motor maps and cerebral activation.
        Neurorehabil Neural Repair. 2003; 17: 48-57
        • Sutcliffe T.L.
        • Gaetz W.C.
        • Logan W.J.
        • Cheyne D.O.
        • Fehlings D.L.
        Cortical reorganization after modified constraint-induced movement therapy in pediatric hemiplegic cerebral palsy.
        J Child Neurol. 2007; 22: 1281-1287
        • Johansen-Berg H.
        • Dawes H.
        • Guy C.
        • Smith S.M.
        • Wade D.T.
        • Matthews P.M.
        Correlation between motor improvements and altered fMRI activity after rehabilitative therapy.
        Brain. 2002; 125: 2731-2742
        • Hodics T.
        • Cohen L.G.
        Functional neuroimaging in motor recovery after stroke.
        Top Stroke Rehabil. 2005; 12: 15-21
        • Hodics T.
        • Cohen L.G.
        • Cramer S.C.
        Functional imaging of intervention effects in stroke motor rehabilitation.
        Arch Phys Med Rehabil. 2006; 87: S36-S42
        • Liepert J.
        • Miltner W.H.
        • Bauder H.
        • et al.
        Motor cortex plasticity during constraint-induced movement therapy in stroke patients.
        Neurosci Lett. 1998; 250: 5-8
        • Liepert J.
        • Graef S.
        • Uhde I.
        • Leidner O.
        • Weiller C.
        Training-induced changes of motor cortex representations in stroke patients.
        Acta Neurol Scand. 2000; 101: 321-326
        • Liepert J.
        Motor cortex excitability in stroke before and after constraint-induced movement therapy.
        Cogn Behav Neurol. 2006; 19: 41-47
        • Hamzei F.
        • Liepert J.
        • Dettmers C.
        • Weiller C.
        • Rijntjes M.
        Two different reorganization patterns after rehabilitative therapy: An exploratory study with fMRI and TMS.
        Neuroimage. 2006; 31: 710-720
        • Liepert J.
        Transcranial magnetic stimulation in neurorehabilitation.
        Acta Neurochir (Wien). 2005; 93: 71-74
        • Ro T.
        • Noser E.
        • Boake C.
        • et al.
        Functional reorganization and recovery after constraint-induced movement therapy in subacute stroke: Case reports.
        Neurocase. 2006; 12: 50-60
        • Tarkka I.M.
        • Kononen M.
        • Pitkanen K.
        • Sivenius J.
        • Mervaalat E.
        Alterations in cortical excitability in chronic stroke after constraint-induced movement therapy.
        Neurol Res. 2008; 30: 504-510
        • Gordon A.M.
        • Schneider J.A.
        • Chinnan A.
        • Charles J.R.
        Efficacy of a hand-arm bimanual intensive therapy (HABIT) in children with hemiplegic cerebral palsy: A randomized control trial.
        Dev Med Child Neurol. 2007; 49: 830-838
        • Gordon A.M.
        • Chinnan A.
        • Gill S.
        • Petra E.
        • Hung Y.C.
        • Charles J.
        Both constraint-induced movement therapy and bimanual training lead to improved performance of upper extremity function in children with hemiplegia.
        Dev Med Child Neurol. 2008; 50: 957-958
        • Skold A.
        • Josephsson S.
        • Eliasson A.C.
        Performing bimanual activities: the experiences of young persons with hemiplegic cerebral palsy.
        Am J Occup Ther. 2004; 58: 416-425
        • Kuhnke N.
        • Juenger H.
        • Walther M.
        • Berweck S.
        • Mall V.
        • Staudt M.
        Do patients with congenital hemiparesis and ipsilateral corticospinal projections respond differently to constraint-induced movement therapy?.
        Dev Med Child Neurol. 2008; 50: 898-903
        • Pascual-Leone A.
        • Amedi A.
        • Fregni F.
        • Merabet L.B.
        The plastic human brain cortex.
        Annu Rev Neurosci. 2005; 28: 377-401
        • Pascual-Leone A.
        • Tormos J.M.
        • Keenan J.
        • Tarazona F.
        • Canete C.
        • Catala M.D.
        Study and modulation of human cortical excitability with transcranial magnetic stimulation.
        J Clin Neurophysiol. 1998; 15: 333-343
        • Adkins-Muir D.L.
        • Jones T.A.
        Cortical electrical stimulation combined with rehabilitative training: Enhanced functional recovery and dendritic plasticity following focal cortical ischemia in rats.
        Neurol Res. 2003; 25: 780-788
        • Teskey G.C.
        • Flynn C.
        • Goertzen C.D.
        • Monfils M.H.
        • Young N.A.
        Cortical stimulation improves skilled forelimb use following a focal ischemic infarct in the rat.
        Neurol Res. 2003; 25: 794-800
        • Chen R.
        • Classen J.
        • Gerloff C.
        • et al.
        Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation.
        Neurology. 1997; 48: 1398-1403
        • Lisanby S.H.
        • Gutman D.
        • Luber B.
        • Schroeder C.
        • Sackeim H.A.
        • Sham T.M.S.
        Intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials.
        Biol Psychiatry. 2001; 49: 460-463
        • Rossini P.M.
        • Desiato M.T.
        • Caramia M.D.
        Age-related changes of motor evoked potentials in healthy humans: Non-invasive evaluation of central and peripheral motor tracts excitability and conductivity.
        Brain Res. 1992; 593: 14-19
        • Lin K.L.
        • Pascual-Leone A.
        Transcranial magnetic stimulation and its applications in children.
        Chang Gung Med J. 2002; 25: 424-436
        • Liebetanz D.
        • Fauser S.
        • Michaelis T.
        • et al.
        Safety aspects of chronic low-frequency transcranial magnetic stimulation based on localized proton magnetic resonance spectroscopy and histology of the rat brain.
        J Psychiatr Res. 2003; 37: 277-286
        • Naeser M.A.
        • Martin P.I.
        • Nicholas M.
        • et al.
        Improved naming after TMS treatments in a chronic, global aphasia patient: Case report.
        Neurocase. 2005; 11: 182-193
        • Kauffmann C.D.
        • Cheema M.A.
        • Miller B.E.
        Slow right prefrontal transcranial magnetic stimulation as a treatment for medication-resistant depression: A double-blind, placebo-controlled study.
        Depress Anxiety. 2004; 19: 59-62
        • Klein E.
        • Kolsky Y.
        • Puyerovsky M.
        • Koren D.
        • Chistyakov A.
        • Feinsod M.
        Right prefrontal slow repetitive transcranial magnetic stimulation in schizophrenia: A double-blind sham-controlled pilot study.
        Biol Psychiatry. 1999; 46: 1451-1454
        • Pascual-Leone A.
        • Rubio B.
        • Pallardo F.
        • Catala M.D.
        Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression.
        Lancet. 1996; 348: 233-237
        • Speer A.M.
        • Benson B.E.
        • Kimbrell T.K.
        • et al.
        Opposite effects of high and low frequency rTMS on mood in depressed patients: Relationship to baseline cerebral activity on PET.
        J Affect Disord. 2009; 115: 386-394
        • Hsu W.Y.
        • Cheng C.H.
        • Liao K.K.
        • Lee I.H.
        • Lin Y.Y.
        Effects of repetitive transcranial magnetic stimulation on motor functions in patients with stroke: A meta-analysis.
        Stroke. 2012; 43: 1849-1857
        • Zaghi S.
        • Acar M.
        • Hultgren B.
        • Boggio P.S.
        • Fregni F.
        Noninvasive brain stimulation with low-intensity electrical currents: Putative mechanisms of action for direct and alternating current stimulation.
        Neuroscientist. 2010; 16: 285-307
        • Nitsche M.A.
        • Paulus W.
        Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.
        J Physiol (Lond). 2000; 527: 633-639
        • Brunoni A.R.
        • Amadera J.
        • Berbel B.
        • Volz M.S.
        • Rizzerio B.G.
        • Fregni F.
        A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation.
        Int J Neuropsychopharmacol. 2011; 14: 1133-1145
        • Nitsche M.A.
        • Cohen L.G.
        • Wassermann E.M.
        • et al.
        Transcranial direct current stimulation: State of the art 2008.
        Brain Stimul. 2008; 1: 206-223
        • Poreisz C.
        • Boros K.
        • Antal A.
        • Paulus W.
        Safety aspects of transcranial direct current stimulation concerning healthy subjects and patients.
        Brain Res Bull. 2007; 72: 208-214
        • Gandiga P.C.
        • Hummel F.C.
        • Cohen L.G.
        Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation.
        Clin Neurophysiol. 2006; 117: 845-850
        • Reis J.
        • Robertson E.M.
        • Krakauer J.W.
        • et al.
        Consensus: Can transcranial direct current stimulation and transcranial magnetic stimulation enhance motor learning and memory formation?.
        Brain Stimul. 2008; 1: 363-369
        • Reis J.
        • Schambra H.M.
        • Cohen L.G.
        • et al.
        Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation.
        Proc Natl Acad Sci USA. 2009; 106: 1590-1595
        • Fritsch B.
        • Reis J.
        • Martinowich K.
        • et al.
        Direct current stimulation promotes BDNF-dependent synaptic plasticity: Potential implications for motor learning.
        Neuron. 2010; 66: 198-204
        • Boggio P.S.
        • Alonso-Alonso M.
        • Mansur C.G.
        • et al.
        Hand function improvement with low-frequency repetitive transcranial magnetic stimulation of the unaffected hemisphere in a severe case of stroke.
        Am J Phys Med Rehabil. 2006; 85: 927-930
        • Vines B.W.
        • Nair D.G.
        • Schlaug G.
        Contralateral and ipsilateral motor effects after transcranial direct current stimulation.
        Neuroreport. 2006; 17: 671-674
        • Hummel F.C.
        • Heise K.
        • Celnik P.
        • Floel A.
        • Gerloff C.
        • Cohen L.G.
        Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex.
        Neurobiol Aging. 2010; 31: 2160-2168
        • Nitsche M.A.
        • Schauenburg A.
        • Lang N.
        • et al.
        Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human.
        J Cogn Neurosci. 2003; 15: 619-626
        • Nitsche M.A.
        • Paulus W.
        Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans.
        Neurology. 2001; 57: 1899-1901
        • Lindenberg R.
        • Renga V.
        • Zhu L.L.
        • Nair D.
        • Schlaug G.
        Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients.
        Neurology. 2010; 75: 2176-2184
        • Hummel F.C.
        • Voller B.
        • Celnik P.
        • et al.
        Effects of brain polarization on reaction times and pinch force in chronic stroke.
        BMC Neurosci. 2006; 7: 73
        • Boggio P.S.
        • Nunes A.
        • Rigonatti S.P.
        • Nitsche M.A.
        • Pascual-Leone A.
        • Fregni F.
        Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients.
        Restor Neurol Neurosci. 2007; 25: 123-129
        • Bax M.
        • Goldstein M.
        • Rosenbaum P.
        • et al.
        Proposed definition and classification of cerebral palsy, April 2005.
        Dev Med Child Neurol. 2005; 47: 571-576
        • Kirton A.
        • deVeber G.
        Cerebral palsy secondary to perinatal ischemic stroke.
        Clin Perinatol. 2006; 33: 367-386
        • Li Q.
        • Martin J.H.
        Postnatal development of corticospinal axon terminal morphology in the cat.
        J Comp Neurol. 2001; 435: 127-141
        • Eyre J.A.
        • Miller S.
        • Clowry G.J.
        • Conway E.A.
        • Watts C.
        Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres.
        Brain. 2000; 123: 51-64
        • Daly J.J.
        • Wolpaw J.R.
        Brain-computer interfaces in neurological rehabilitation.
        Lancet Neurol. 2008; 7: 1032-1043
        • Hesse S.
        • Werner C.
        • Schonhardt E.M.
        • Bardeleben A.
        • Jenrich W.
        • Kirker S.G.
        Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: A pilot study.
        Restor Neurol Neurosci. 2007; 25: 9-15
        • Mahmoudi H.
        • Borhani H.A.
        • Petramfar P.
        • Jahanshahi S.
        • Salehi Z.
        • Fregni F.
        Transcranial direct current stimulation: Electrode montage in stroke.
        Disabil Rehabil. 2011; 33: 1383-1388