Advertisement

Pluripotent Possibilities: Human Umbilical Cord Blood Cell Treatment After Neonatal Brain Injury

  • Tatyana Verina
    Affiliations
    Neurology and Developmental Medicine, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
    Search for articles by this author
  • Ali Fatemi
    Affiliations
    Neurology and Developmental Medicine, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland

    Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
    Search for articles by this author
  • Michael V. Johnston
    Affiliations
    Neurology and Developmental Medicine, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland

    Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
    Search for articles by this author
  • Anne M. Comi
    Correspondence
    Communications should be addressed to: Dr. Comi; Kennedy Krieger Institute; 801 North Broadway; Baltimore, MD 21205.
    Affiliations
    Neurology and Developmental Medicine, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland

    Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland

    Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
    Search for articles by this author

      Abstract

      Perinatal hypoxic-ischemic brain injury and stroke in the developing brain remain important causes of chronic neurologic morbidity. Emerging data suggest that transplantation of umbilical cord blood–derived stem cells may have therapeutic potential for neuroregeneration and improved functional outcome. The pluripotent capacity of stem cells from the human umbilical cord blood provides simultaneous targeting of multiple neuropathologic events initiated by a hypoxic-ischemic insult. Their high regenerative potential and naïve immunologic phenotype makes them a preferable choice for transplantation. A multiplicity of transplantation protocols have been studied with a variety of brain injury models; however, only a few have been conducted on immature animals. Biological recipient characteristics, such as age and sex, appear to differentially modulate responses of the animals to the transplanted cord blood stem cells. Survival, migration, and function of the transplanted cells have also been studied and reveal insights into the mechanisms of cord blood stem cell effects. Data from preclinical studies have informed current clinical safety trials of human cord blood in neonates, and further work is needed to continue progress in this field.
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Pediatric Neurology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Taupin P.
        Transplantation of cord blood stem cells for treating hematologic diseases and strategies to improve engraftment.
        Therapy. 2010; 7: 703-715
        • Rocha V.
        • Crotta A.
        • Ruggeri A.
        • et al.
        • Eurocord Registry
        Double cord blood transplantation: extending the use of unrelated umbilical cord blood cells for patients with hematological diseases.
        Best Pract Res Clin Haematol. 2010; 23: 223-229
        • Brunstein C.G.
        Umbilical cord blood transplantation for the treatment of hematologic malignancies.
        Cancer Control. 2011; 18: 222-236
        • Pimentel-Coelho P.M.
        • Mendez-Otero R.
        Cell therapy for neonatal hypoxic-ischemic encephalopathy.
        Stem Cells Dev. 2010; 19: 299-310
        • Verneris M.R.
        • Miller J.S.
        The phenotypic and functional characteristics of umbilical cord blood and peripheral blood natural killer cells.
        Br J Haematol. 2009; 147: 185-191
        • Cowan F.
        • Rutherford M.
        • Groenendaal F.
        • et al.
        Origin and timing of brain lesions in term infants with neonatal encephalopathy.
        Lancet. 2003; 361: 736-742
        • Carli G.
        • Reiger I.
        • Evans N.
        One-year neurodevelopmental outcome after moderate newborn hypoxic ischemic encephalopathy.
        J Paediatr Child Health. 2004; 40: 217-220
        • Itoo B.A.
        • Al-Hawsawi Z.M.
        • Khan A.H.
        Hypoxic ischemic encephalopathy. Incidence and risk factors in North Western Saudi Arabia.
        Saudi Med J. 2003; 24: 147-153
        • Huang B.Y.
        • Castillo M.
        Hypoxic-ischemic brain injury: imaging findings from birth to adulthood.
        Radiographics. 2008; 28: 417-439
        • Lafemina M.J.
        • Sheldon R.A.
        • Ferriero D.M.
        Acute hypoxia-ischemia results in hydrogen peroxide accumulation in neonatal but not adult mouse brain.
        Pediatr Res. 2006; 59: 680-683
        • Northington F.J.
        Brief update on animal models of hypoxic-ischemic encephalopathy and neonatal stroke.
        ILAR J. 2006; 47: 32-38
        • Ashwal S.
        • Tone B.
        • Tian H.R.
        • Cole D.J.
        • Liwnicz B.H.
        • Pearce W.J.
        Core and penumbral nitric oxide synthase activity during cerebral ischemia and reperfusion in the rat pup.
        Pediatr Res. 1999; 46: 390-400
        • Kim E.S.
        • Ahn S.Y.
        • Im G.H.
        • et al.
        Human umbilical cord blood-derived mesenchymal stem cell transplantation attenuates severe brain injury by permanent middle cerebral artery occlusion in newborn rats.
        Pediatr Res. 2012; 72: 277-284
        • Fernández-López D.
        • Faustino J.
        • Derugin N.
        • et al.
        Reduced infarct size and accumulation of microglia in rats treated with WIN 55,212-2 after neonatal stroke.
        Neuroscience. 2012; 207: 307-315
        • Comi A.M.
        • Trescher W.H.
        • Abi-Raad R.
        • Johnston M.V.
        • Wilson M.A.
        Impact of age and strain on ischemic brain injury and seizures after carotid ligation in immature mice.
        Int J Dev Neurosci. 2009; 27: 271-277
        • Kadam S.D.
        • Smith-Hicks C.L.
        • Smith D.R.
        • Worley P.F.
        • Comi A.M.
        Functional integration of new neurons into hippocampal networks and poststroke comorbidities following neonatal stroke in mice.
        Epilepsy Behav. 2010; 18: 344-357
        • Markowitz G.J.
        • Kadam S.D.
        • Smith D.R.
        • Johnston M.V.
        • Comi A.M.
        Different effects of high- and low-dose phenobarbital on post-stroke seizure suppression and recovery in immature CD1 mice.
        Epilepsy Res. 2011; 94: 138-148
        • Xiao J.
        • Nan Z.
        • Motooka Y.
        • Low W.C.
        Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury.
        Stem Cells Dev. 2005; 4: 722-733
        • Chen N.
        • Hudson J.E.
        • Walczak P.
        • et al.
        Human umbilical cord blood progenitors: the potential of these hematopoietic cells to become neural.
        Stem Cells. 2005; 23: 1560-1570
        • Sirchia G.
        • Rebulla P.
        Placental/umbilical cord blood transplantation.
        Haematologica. 1999; 84: 738-747
        • Broxmeyer H.E.
        • Douglas G.W.
        • Hangoc G.
        • et al.
        Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells.
        Proc Natl Acad Sci USA. 1989; 86: 3828-3832
        • Buzańska L.
        • Jurga M.
        • Domańska-Janik K.
        Neuronal differentiation of human umbilical cord blood neural stem-like cell line.
        Neurodegener Dis. 2006; 3: 19-26
        • Ali H.
        • Bahbahani H.
        Umbilical cord blood stem cells—Potential therapeutic tool for neural injuries and disorders.
        Acta Neurobiol Exp (Wars). 2010; 70: 316-324
        • Haylock D.N.
        • Nilsson S.K.
        Expansion of umbilical cord blood for clinical transplantation.
        Curr Stem Cell Res Ther. 2007; 2: 324-335
        • Lee O.K.
        • Kuo T.K.
        • Chen W.M.
        • Lee K.D.
        • Hsieh S.L.
        • Chen T.H.
        Isolation of multipotent mesenchymal stem cells from umbilical cord blood.
        Blood. 2004; 103: 1669-1675
        • Lin R.Z.
        • Dreyzin A.
        • Aamodt K.
        • Dudley A.C.
        • Melero-Martin J.M.
        Functional endothelial progenitor cells from cryopreserved umbilical cord blood.
        Cell Transplant. 2011; 20: 515-522
        • Putman D.M.
        • Liu K.Y.
        • Broughton H.C.
        • Bell G.I.
        • Hess D.A.
        Umbilical cord blood-derived aldehyde dehydrogenase-expressing progenitor cells promote recovery from acute ischemic injury.
        Stem Cells. 2012; 30: 2248-2260
        • Pelagiadis I.
        • Relakis K.
        • Kalmanti L.
        • Dimitriou H.
        CD133 immunomagnetic separation: effectiveness of the method for CD133(+) isolation from umbilical cord blood.
        Cytotherapy. 2012; 14: 701-706
        • Jaatinen T.
        • Laine J.
        Isolation of mononuclear cells from human cord blood by Ficoll-Paque density gradient.
        Curr Protoc Stem Cell Biol. 2007; (Chapter 2:Unit 2A.1)
        • Brown J.A.
        • Boussiotis V.A.
        Umbilical cord blood transplantation: Basic biology and clinical challenges to immune reconstitution.
        Clin Immunol. 2008; 127: 286-297
        • Pimentel-Coelho P.M.
        • Magalhães E.S.
        • Lopes L.M.
        • deAzevedo L.C.
        • Santiago M.F.
        • Mendez-Otero R.
        Human cord blood transplantation in a neonatal rat model of hypoxic-ischemic brain damage: Functional outcome related to neuroprotection in the striatum.
        Stem Cells Dev. 2010; 19: 351-358
        • Geissler M.
        • Dinse H.R.
        • Neuhoff S.
        • Kreikemeier K.
        • Meier C.
        Human umbilical cord blood cells restore brain damage induced changes in rat somatosensory cortex.
        PLoS One. 2011; 6: 1
        • Meier C.
        • Middelanis J.
        • Wasielewski B.
        • et al.
        Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells.
        Pediatr Res. 2006; 59: 244-249
        • Rosenkranz K.
        • Kumbruch S.
        • Lebermann K.
        • et al.
        The chemokine SDF-1/CXCL12 contributes to the “homing” of umbilical cord blood cells to a hypoxic-ischemic lesion in the rat brain.
        J Neurosci Res. 2010; 88: 1223-1233
        • Yasuhara T.
        • Hara K.
        • Maki M.
        • et al.
        Mannitol facilitates neurotrophic factor up-regulation and behavioural recovery in neonatal hypoxic-ischaemic rats with human umbilical cord blood grafts.
        J Cell Mol Med. 2010; 14: 914-921
        • Terskikh A.V.
        • Easterday M.C.
        • Li L.
        • et al.
        From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs.
        Proc Natl Acad Sci USA. 2001; 98: 7934-7939
        • Tanaka N.
        • Kamei N.
        • Nakamae T.
        • et al.
        CD133+ cells from human umbilical cord blood reduce cortical damage and promote axonal growth in neonatal rat organ co-cultures exposed to hypoxia.
        Int J Dev Neurosci. 2010; 28: 581-587
        • Taguchi A.
        • Soma T.
        • Tanaka H.
        • et al.
        Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model.
        J Clin Invest. 2004; 114: 330-338
        • Chen S.H.
        • Chang F.M.
        • Chang H.K.
        • Chen W.C.
        • Huang K.F.
        • Lin M.T.
        Human umbilical cord blood-derived CD34+ cells cause attenuation of multiorgan dysfunction during experimental heatstroke.
        Shock. 2007; 27: 663-671
        • Nystedt J.
        • Mäkinen S.
        • Laine J.
        • Jolkkonen J.
        Human cord blood CD34+ cells and behavioral recovery following focal cerebral ischemia in adult rats.
        Acta Neurobiol Exp (Wars). 2006; 66: 293-300
        • Chen J.
        • Sanberg P.R.
        • Li Y.
        • et al.
        Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats.
        Stroke. 2001; 32: 2682-2688
        • Lecanu L.
        Sex, the underestimated potential determining factor in brain tissue repair strategy.
        Stem Cells Dev. 2011; 20: 2031-2035
        • Herrmann J.L.
        • Abarbanell A.M.
        • Weil B.R.
        • et al.
        Gender dimorphisms in progenitor and stem cell function in cardiovascular disease.
        J Cardiovasc Transl Res. 2010; 3: 103-113
        • Yuan J.
        • Yu J.X.
        • Ge J.
        Sexual dimorphism on the neurogenic potential of rhesus monkeys mesenchymal stem cells.
        Biochem Biophys Res Commun. 2010; 396: 394-400
        • Wang Y.
        • Han Z.B.
        • Ma J.
        • et al.
        A toxicity study of multiple-administration human umbilical cord mesenchymal stem cells in cynomolgus monkeys.
        Stem Cells Dev. 2012; 21: 1401-1408
        • Zigova T.
        • Song S.
        • Willing A.E.
        • et al.
        Human umbilical cord blood cells express neural antigens after transplantation into the developing rat brain.
        Cell Transplant. 2002; 11: 265-274
        • Koh S.H.
        • Kim K.S.
        • Choi M.R.
        • et al.
        Implantation of human umbilical cord-derived mesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats.
        Brain Res. 2008; 1229: 233-248
        • Liao W.
        • Zhong J.
        • Yu J.
        • et al.
        Therapeutic benefit of human umbilical cord derived mesenchymal stromal cells in intracerebral hemorrhage rat: implications of anti-inflammation and angiogenesis.
        Cell Physiol Biochem. 2009; 24: 307-316
        • Xia G.
        • Hong X.
        • Chen X.
        • Lan F.
        • Zhang G.
        • Liao L.
        Intracerebral transplantation of mesenchymal stem cells derived from human umbilical cord blood alleviates hypoxic ischemic brain injury in rat neonates.
        J Perinat Med. 2010; 38: 215-221
        • van Velthoven C.T.
        • Kavelaars A.
        • van Bel F.
        • Heijnen C.J.
        Repeated mesenchymal stem cell treatment after neonatal hypoxia-ischemia has distinct effects on formation and maturation of new neurons and oligodendrocytes leading to restoration of damage, corticospinal motor tract activity, and sensorimotor function.
        J Neurosci. 2010; 30: 9603-9611
        • van Velthoven C.T.
        • Kavelaars A.
        • van Bel F.
        • Heijnen C.J.
        Mesenchymal stem cell transplantation changes the gene expression profile of the neonatal ischemic brain.
        Brain Behav Immun. 2011; 25: 1342-1348
        • Chen N.
        • Newcomb J.
        • Garbuzova-Davis S.
        • Davis Sanberg C.
        • Sanberg P.R.
        • Willing A.E.
        Human umbilical cord blood cells have trophic effects on young and aging hippocampal neurons in vitro.
        Aging Dis. 2010; 1: 173-190
        • Kao C.H.
        • Chen S.H.
        • Chio C.C.
        • Lin M.T.
        Human umbilical cord blood-derived CD34+ cells may attenuate spinal cord injury by stimulating vascular endothelial and neurotrophic factors.
        Shock. 2008; 29: 49-55
        • Ding D.C.
        • Shyu W.C.
        • Chiang M.F.
        • et al.
        Enhancement of neuroplasticity through upregulation of beta1-integrin in human umbilical cord-derived stromal cell implanted stroke model.
        Neurobiol Dis. 2007; 27: 339-353
        • Jiang L.
        • Newman M.
        • Saporta S.
        • et al.
        MIP-1alpha and MCP-1 induce migration of human umbilical cord blood cells in models of stroke.
        Curr Neurovasc Res. 2008; 5: 118-124
        • de Paula S.
        • Vitola A.S.
        • Greggio S.
        • et al.
        Hemispheric brain injury and behavioral deficits induced by severe neonatal hypoxia-ischemia in rats are not attenuated by intravenous administration of human umbilical cord blood cells.
        Pediatr Res. 2009; 65: 631-635
        • Riegelsberger U.M.
        • Deten A.
        • Pösel C.
        • et al.
        Intravenous human umbilical cord blood transplantation for stroke: impact on infarct volume and caspase-3-dependent cell death in spontaneously hypertensive rats.
        Exp Neurol. 2011; 227: 218-223
        • Zawadzka M.
        • Lukasiuk K.
        • Machaj E.K.
        • Pojda Z.
        • Kamińska B.
        Lack of migration and neurological benefits after infusion of umbilical cord blood cells in ischemic brain injury.
        Acta Neurobiol Exp (Wars). 2009; 69: 46-51
        • Mäkinen S.
        • Kekarainen T.
        • Nystedt J.
        • et al.
        Human umbilical cord blood cells do not improve sensorimotor or cognitive outcome following transient middle cerebral artery occlusion in rats.
        Brain Res. 2006; 1123: 207-215
        • Vendrame M.
        • Cassady J.
        • Newcomb J.
        • et al.
        Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume.
        Stroke. 2004; 35: 2390-2395
        • Boltze J.
        • Reich D.M.
        • Hau S.
        • et al.
        Assessment of neuroprotective effects of human umbilical cord blood mononuclear cell subpopulations in vitro and in vivo.
        Cell Transplant. 2012; 21: 723-737
        • Lim J.Y.
        • Jeong C.H.
        • Jun J.A.
        • et al.
        Therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells after intrathecal administration by lumbar puncture in a rat model of cerebral ischemia.
        Stem Cell Res Ther. 2011; 2: 38
        • Escolar M.L.
        • Poe M.D.
        • Provenzale J.M.
        • et al.
        Transplantation of umbilical-cord blood in babies with infantile Krabbe's disease.
        N Engl J Med. 2005; 352: 2069-2081
        • Duffner P.K.
        • Caviness Jr., V.S.
        • Erbe R.W.
        • et al.
        The long-term outcomes of presymptomatic infants transplanted for Krabbe disease: Report of the workshop held on July 11 and 12, 2008, Holiday Valley, New York.
        Genet Med. 2009; 11: 450-454