Advertisement

Craniocervical Arterial Dissection in Children: Pathophysiology and Management

  • Monica Nash
    Affiliations
    Department of Nursing, Red River College, Winnipeg, Manitoba, Canada
    Search for articles by this author
  • Mubeen F. Rafay
    Correspondence
    Communications should be addressed to: Dr. Rafay; Associate Professor; Section of Pediatric Neurology; Department of Pediatric and Child Health; University of Manitoba; Children's Hospital Research Institute of Manitoba; AE 308, 820 Sherbrook Street; Winnipeg; Manitoba R3A 1R9, Canada.
    Affiliations
    Section of Pediatric Neurology, Department of Pediatrics and Child Health, University of Manitoba, Manitoba, Canada

    Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
    Search for articles by this author

      Abstract

      Background

      Craniocervical arterial dissection is a commonly reported arteriopathy associated with stroke in children. It is characterized by a high stroke recurrence rate and variable outcomes. Here we review the pathophysiology, clinical presentation, and diagnostic neuroimaging approaches that are helpful in accurate diagnosis and follow-up of children with arterial dissection.

      Methods

      MEDLINE searches (2000 to 2018) for articles that contained patients aged less than 18 years with craniocervical arterial dissection was performed, with the goal of analyzing their presenting features, pathophysiological mechanisms, and imaging characteristics and interventions.

      Results

      Sixteen articles met the study criteria and reported 182 cases of craniocervical arterial dissection, 68% male, average age 8.6 years. Dissection was associated with head and neck trauma in 56% of the cases and frequently involved the posterior (61%) and extracranial locations (64%); the vertebral artery was the most commonly involved artery (60%). The most common clinical presentation was hemiparesis (80/160, 50%), followed by headache (64/164, 39%). Magnetic resonance imaging was the preferred neuroimaging method, followed by cerebral catheter angiography as a gold standard definitive neurovascular imaging modality when the initial vascular imaging revealed nondiagnostic findings.

      Conclusions

      The diagnosis of arterial dissection requires a high index of suspicion and consideration for detailed neurovascular imaging, including both the cranial and cervical regions. Neurovascular imaging challenges, especially visualization of arterial abnormalities, highlight the importance of appropriate and timely use of specific neurovascular imaging techniques. Magnetic resonance imaging appears to be the preferred neurovascular imaging modality in children with arterial dissection and may obviate the need for invasive cerebral catheter angiography.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Pediatric Neurology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Schievink W.I.
        • Mokri B.
        • Whisnant J.P.
        Internal carotid artery dissection in a community. Rochester, Minnesota, 1987-1992.
        Stroke. 1993; 24: 1678-1680
        • Gabis L.V.
        • Yangala R.
        • Lenn N.J.
        Time lag to diagnosis of stroke in children.
        Pediatrics. 2002; 110: 924-928
        • Rafay M.F.
        • Pontigon A.M.
        • Chiang J.
        • et al.
        Delay to diagnosis in acute pediatric arterial ischemic stroke.
        Stroke. 2009; 40: 58-64
        • Wintermark M.
        • Hills N.K.
        • deVeber G.A.
        • et al.
        Arteriopathy diagnosis in childhood arterial ischemic stroke: results of the vascular effects of infection in pediatric stroke study.
        Stroke. 2014; 45: 3597-3605
        • Rafay M.F.
        • Armstrong D.
        • deVeber G.
        • Domi T.
        • Chan A.
        • MacGregor D.L.
        Craniocervical arterial dissection in children: clinical and radiographic presentation and outcome.
        J Child Neurol. 2006; 21: 8-16
        • Pandey A.S.
        • Hill E.
        • Al-Holou W.N.
        • et al.
        Management of pediatric craniocervical arterial dissections.
        Childs Nerv Syst. 2015; 31: 101-107
        • Mackay M.T.
        • Wiznitzer M.
        • Benedict S.L.
        • Lee K.J.
        • deVeber G.A.
        • Ganesan V.
        Arterial ischemic stroke risk factors: the International Pediatric Stroke Study.
        Ann Neurol. 2011; 69: 130-140
        • deVeber G.
        • Kirton A.
        • Booth F.A.
        • et al.
        Epidemiology and outcomes of arterial ischemic stroke in children: the Canadian Pediatric Ischemic Stroke Registry.
        Pediatr Neurol. 2017; 69: 58-70
        • Giroud M.
        • Lemesle M.
        • Gouyon J.B.
        • Nivelon J.L.
        • Milan C.
        • Dumas R.
        Cerebrovascular disease in children under 16 years of age in the city of Dijon, France: a study of incidence and clinical features from 1985 to 1993.
        J Clin Epidemiol. 1995; 48: 1343-1348
        • Lynch J.K.
        • Hirtz D.G.
        • deVeber G.
        • Nelson K.B.
        Report of the National Institute of Neurological Disorders and Stroke workshop on perinatal and childhood stroke.
        Pediatrics. 2002; 109: 116-123
        • Roach E.S.
        • Golomb M.R.
        • Adams R.
        • et al.
        Management of stroke in infants and children: a scientific statement from a Special Writing Group of the American Heart Association Stroke Council and the Council on Cardiovascular Disease in the Young.
        Stroke. 2008; 39: 2644-2691
        • Chabrier S.
        • Lasjaunias P.
        • Husson B.
        • Landrieu P.
        • Tardieu M.
        Ischaemic stroke from dissection of the craniocervical arteries in childhood: report of 12 patients.
        Eur J Paediatr Neurol. 2003; 7: 39-42
        • Ganesan V.
        • Chong W.K.
        • Cox T.C.
        • Chawda S.J.
        • Prengler M.
        • Kirkham F.J.
        Posterior circulation stroke in childhood: risk factors and recurrence.
        Neurology. 2002; 59: 1552-1556
        • Schneidereit N.P.
        • Simons R.
        • Nicolaou S.
        • et al.
        Utility of screening for blunt vascular neck injuries with computed tomographic angiography.
        J Trauma. 2006; 60: 209-215
        • Berne J.D.
        • Reuland K.S.
        • Villarreal D.H.
        • McGovern T.M.
        • Rowe S.A.
        • Norwood S.H.
        Sixteen-slice multi-detector computed tomographic angiography improves the accuracy of screening for blunt cerebrovascular injury.
        J Trauma. 2006; 60: 1204-1209
        • Rollins N.
        • Pride G.L.
        • Plumb P.A.
        • Dowling M.M.
        Brainstem strokes in children: an 11-year series from a tertiary pediatric center.
        Pediatr Neurol. 2013; 49: 458-464
        • Fullerton H.J.
        • Johnston S.C.
        • Smith W.S.
        Arterial dissection and stroke in children.
        Neurology. 2001; 57: 1155-1160
        • Camacho A.
        • Villarejo A.
        • de Aragon A.M.
        • Simon R.
        • Mateos F.
        Spontaneous carotid and vertebral artery dissection in children.
        Pediatr Neurol. 2001; 25: 250-253
        • Stence N.V.
        • Fenton L.Z.
        • Goldenberg N.A.
        • Armstrong-Wells J.
        • Bernard T.J.
        Craniocervical arterial dissection in children: diagnosis and treatment.
        Curr Treat Options Neurol. 2011; 13: 636-648
        • Songsaeng D.
        • Srivatanakul K.
        • Krings T.
        • Geibprasert S.
        • Ozanne A.
        • Lasjaunias P.
        Symptomatic spontaneous vertebrobasilar dissections in children: review of 29 consecutive cases.
        J Neurosurg Pediatr. 2010; 6: 233-243
        • Lee Y.Y.
        • Lin K.L.
        • Wang H.S.
        • et al.
        Craniocervical arterial dissection: a cause of childhood arterial ischemic stroke in Taiwan.
        J Formos Med Assoc. 2010; 109: 156-162
        • Brandt T.
        • Orberk E.
        • Weber R.
        • et al.
        Pathogenesis of cervical artery dissections: association with connective tissue abnormalities.
        Neurology. 2001; 57: 24-30
        • Brandt T.
        • Grond-Ginsbach C.
        Spontaneous cervical artery dissection: from risk factors toward pathogenesis.
        Stroke. 2002; 33: 657-658
        • Cushing K.E.
        • Ramesh V.
        • Gardner-Medwin D.
        • et al.
        Tethering of the vertebral artery in the congenital arcuate foramen of the atlas vertebra: a possible cause of vertebral artery dissection in children.
        Dev Med Child Neurol. 2001; 43: 491-496
        • Brandt T.
        • Hausser I.
        • Orberk E.
        • et al.
        Ultrastructural connective tissue abnormalities in patients with spontaneous cervicocerebral artery dissections.
        Ann Neurol. 1998; 44: 281-285
        • Hausser I.
        • Muller U.
        • Engelter S.
        • et al.
        Different types of connective tissue alterations associated with cervical artery dissections.
        Acta Neuropathol. 2004; 107: 509-514
        • Wei F.
        • Diedrich K.T.
        • Fullerton H.J.
        • et al.
        Arterial tortuosity: an imaging biomarker of childhood stroke pathogenesis?.
        Stroke. 2016; 47: 1265-1270
        • Amlie-Lefond C.
        • Bernard T.J.
        • Sebire G.
        • et al.
        Predictors of cerebral arteriopathy in children with arterial ischemic stroke: results of the International Pediatric Stroke Study.
        Circulation. 2009; 119: 1417-1423
        • Frosk P.
        • Salman M.S.
        • Wrogemann J.
        • Shah N.
        • Rafay M.F.
        Recurrent posterior circulation stroke in an infant with basilar artery aneurysm.
        J Child Neurol. 2009; 24: 1019-1020
        • Fullerton H.J.
        • Wintermark M.
        • Hills N.K.
        • et al.
        Risk of recurrent arterial ischemic stroke in childhood: a Prospective International Study.
        Stroke. 2016; 47: 53-59
        • Tan M.A.
        • Armstrong D.
        • MacGregor D.L.
        • Kirton A.
        Late complications of vertebral artery dissection in children: pseudoaneurysm, thrombosis, and recurrent stroke.
        J Child Neurol. 2009; 24: 354-360
        • Fluss J.
        • Garcia-Tarodo S.
        • Granier M.
        • et al.
        Perinatal arterial ischemic stroke related to carotid artery occlusion.
        Eur J Paediatr Neurol. 2016; 20: 639-648
        • Pugliese F.
        • Alberghina F.
        • Meijboom W.B.
        • Malago R.
        • Gopalan D.
        • de Feyter P.J.
        Post-processing using multislice computed tomography coronary angiography improves image interpretability in patients with fast heart rates and heart-rate variations.
        J Cardiovasc Med (Hagerstown ). 2007; 8: 1088-1090
        • Mackay M.T.
        • Prabhu S.P.
        • Coleman L.
        Childhood posterior circulation arterial ischemic stroke.
        Stroke. 2010; 41: 2201-2209
        • Mccrea N.
        • Saunders D.
        • Bagkeri E.
        • Chitre M.
        • Ganesan V.
        Diagnosis of vertebral artery dissection in childhood posterior circulation arterial ischaemic stroke.
        Dev Med Child Neurol. 2016; 58: 63-70
        • Orman G.
        • Tekes A.
        • Poretti A.
        • Robertson C.
        • Huisman T.A.
        Posttraumatic carotid artery dissection in children: not to be missed!.
        J Neuroimaging. 2014; 24: 467-472
        • Salih M.A.
        • Al-Jarallah A.A.
        • Al-Salman M.M.
        • Alorainy I.A.
        • Hassan H.H.
        Stroke from cervicocephalic arterial dissection in Saudi children.
        Saudi Med J. 2006; 27 Suppl 1: S103-S107
        • Sepelyak K.
        • Gailloud P.
        • Jordan L.C.
        Athletics, minor trauma, and pediatric arterial ischemic stroke.
        Eur J Pediatr. 2010; 169: 557-562
        • Tan M.A.
        • deVeber G.
        • Kirton A.
        • Vidarsson L.
        • MacGregor D.
        • Shroff M.
        Low detection rate of craniocervical arterial dissection in children using time-of-flight magnetic resonance angiography: causes and strategies to improve diagnosis.
        J Child Neurol. 2009; 24: 1250-1257
        • Dlamini N.
        • Freeman J.L.
        • Mackay M.T.
        • et al.
        Intracranial dissection mimicking transient cerebral arteriopathy in childhood arterial ischemic stroke.
        J Child Neurol. 2011; 26: 1203-1206
        • Amlie-Lefond C.
        Dissecting etiologies of posterior circulation stroke.
        Dev Med Child Neurol. 2016; 58: 10-11
        • Biller J.
        • Sacco R.L.
        • Albuquerque F.C.
        • et al.
        Cervical arterial dissections and association with cervical manipulative therapy: a statement for healthcare professionals from the American Heart Association/American Stroke Association.
        Stroke. 2014; 45: 3155-3174
        • Bernard T.J.
        • Manco-Johnson M.J.
        • Lo W.
        • et al.
        Towards a consensus-based classification of childhood arterial ischemic stroke.
        Stroke. 2012; 43: 371-377
        • Tolani A.T.
        • Yeom K.W.
        • Elbers J.
        Focal cerebral arteriopathy: the face with many names.
        Pediatr Neurol. 2015; 53: 247-252
        • Schievink W.I.
        • Mokri B.
        • Piepgras D.G.
        Spontaneous dissections of cervicocephalic arteries in childhood and adolescence.
        Neurology. 1994; 44: 1607-1612
        • Bernard T.J.
        • Beslow L.A.
        • Manco-Johnson M.J.
        • et al.
        Inter-rater reliability of the CASCADE criteria: challenges in classifying arteriopathies.
        Stroke. 2016; 47: 2443-2449
        • Internet Communication Accessed November 30 2h, clinicaltrials
        Database for Stroke and Infants.
        2018
        • Houser O.W.
        • Mokri B.
        • Sundt Jr., T.M.
        • Baker Jr., H.L.
        • Reese D.F.
        Spontaneous cervical cephalic arterial dissection and its residuum: angiographic spectrum.
        AJNR Am J Neuroradiol. 1984; 5: 27-34
        • Oelerich M.
        • Stogbauer F.
        • Kurlemann G.
        • Schul C.
        • Schuierer G.
        Craniocervical artery dissection: MR imaging and MR angiographic findings.
        Eur Radiol. 1999; 9: 1385-1391
        • Rodallec M.H.
        • Marteau V.
        • Gerber S.
        • Desmottes L.
        • Zins M.
        Craniocervical arterial dissection: spectrum of imaging findings and differential diagnosis.
        Radiographics. 2008; 28: 1711-1728
        • Schievink W.I.
        Spontaneous dissection of the carotid and vertebral arteries.
        N Engl J Med. 2001; 344: 898-906
        • Vertinsky A.T.
        • Schwartz N.E.
        • Fischbein N.J.
        • Rosenberg J.
        • Albers G.W.
        • Zaharchuk G.
        Comparison of multidetector CT angiography and MR imaging of cervical artery dissection.
        AJNR Am J Neuroradiol. 2008; 29: 1753-1760
        • Shellhaas R.A.
        • Smith S.E.
        • O'Tool E.
        • Licht D.J.
        • Ichord R.N.
        Mimics of childhood stroke: characteristics of a prospective cohort.
        Pediatrics. 2006; 118: 704-709
        • Chabrier S.
        • Sebire G.
        • Fluss J.
        Transient cerebral arteriopathy, postvaricella arteriopathy, and focal cerebral arteriopathy or the unique susceptibility of the M1 segment in children with stroke.
        Stroke. 2016; 47: 2439-2441
        • Arnold M.
        • Baumgartner R.W.
        • Stapf C.
        • et al.
        Ultrasound diagnosis of spontaneous carotid dissection with isolated Horner syndrome.
        Stroke. 2008; 39: 82-86
        • Benninger D.H.
        • Georgiadis D.
        • Gandjour J.
        • Baumgartner R.W.
        Accuracy of color duplex ultrasound diagnosis of spontaneous carotid dissection causing ischemia.
        Stroke. 2006; 37: 377-381
        • Dittrich R.
        • Dziewas R.
        • Ritter M.A.
        • et al.
        Negative ultrasound findings in patients with cervical artery dissection. Negative ultrasound in CAD.
        J Neurol. 2006; 253: 424-433
        • Pugliese F.
        • Crusco F.
        • Cardaioli G.
        • et al.
        CT angiography versus colour-Doppler US in acute dissection of the vertebral artery.
        Radiol Med. 2007; 112: 435-443
        • Elijovich L.
        • Kazmi K.
        • Gauvrit J.Y.
        • Law M.
        The emerging role of multidetector row CT angiography in the diagnosis of cervical arterial dissection: preliminary study.
        Neuroradiology. 2006; 48: 606-612
        • Chen C.J.
        • Tseng Y.C.
        • Lee T.H.
        • Hsu H.L.
        • See L.C.
        Multisection CT angiography compared with catheter angiography in diagnosing vertebral artery dissection.
        AJNR Am J Neuroradiol. 2004; 25: 769-774
        • Hanning U.
        • Sporns P.B.
        • Schmiedel M.
        • et al.
        CT versus MR techniques in the detection of cervical artery dissection.
        J Neuroimaging. 2017; 27: 607-612
        • Chalela J.A.
        • Kidwell C.S.
        • Nentwich L.M.
        • et al.
        Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison.
        Lancet. 2007; 369: 293-298
        • Rizzo L.
        • Crasto S.G.
        • Savio D.
        • et al.
        Dissection of cervicocephalic arteries: early diagnosis and follow-up with magnetic resonance imaging.
        Emerg Radiol. 2006; 12: 254-265
        • Levy C.
        • Laissy J.P.
        • Raveau V.
        • et al.
        Carotid and vertebral artery dissections: three-dimensional time-of-flight MR angiography and MR imaging versus conventional angiography.
        Radiology. 1994; 190: 97-103
        • Dlamini N.
        • Yau I.
        • Muthusami P.
        • et al.
        Arterial wall imaging in pediatric stroke.
        Stroke. 2018; 49: 891-898
        • Mandell D.M.
        • Han J.S.
        • Poublanc J.
        • et al.
        Quantitative measurement of cerebrovascular reactivity by blood oxygen level-dependent MR imaging in patients with intracranial stenosis: preoperative cerebrovascular reactivity predicts the effect of extracranial-intracranial bypass surgery.
        AJNR Am J Neuroradiol. 2011; 32: 721-727
        • Oppenheim C.
        • Naggara O.
        • Touze E.
        • et al.
        High-resolution MR imaging of the cervical arterial wall: what the radiologist needs to know.
        Radiographics. 2009; 29: 1413-1431
        • Hakimi R.
        • Sivakumar S.
        Imaging of carotid dissection.
        Curr Pain Headache Rep. 2019; 23: 2
        • Wolfe T.J.
        • Hussain S.I.
        • Lynch J.R.
        • Fitzsimmons B.F.
        • Zaidat O.O.
        Pediatric cerebral angiography: analysis of utilization and findings.
        Pediatr Neurol. 2009; 40: 98-101
        • Markus H.S.
        • Hayter E.
        • Levi C.
        • Feldman A.
        • Venables G.
        • Norris J.
        Antiplatelet treatment compared with anticoagulation treatment for cervical artery dissection (CADISS): a randomised trial.
        Lancet Neurol. 2015; 14: 361-367
        • Kasner S.E.
        CADISS: a feasibility trial that answered its question.
        Lancet Neurol. 2015; 14: 342-343
        • Powers W.J.
        • Rabinstein A.A.
        • Ackerson T.
        • et al.
        2018 Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association.
        Stroke. 2018; 49: e46-e110