Advertisement
Topical Review| Volume 97, P18-25, August 2019

Download started.

Ok

Cyclin-Dependent Kinase-Like 5 Deficiency Disorder: Clinical Review

      Abstract

      Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a developmental encephalopathy caused by pathogenic variants in the gene CDKL5. This unique disorder includes early infantile onset refractory epilepsy, hypotonia, developmental intellectual and motor disabilities, and cortical visual impairment. We review the clinical presentations and genetic variations in CDD based on a systematic literature review and experience in the CDKL5 Centers of Excellence. We propose minimum diagnostic criteria. Pathogenic variants include deletions, truncations, splice variants, and missense variants. Pathogenic missense variants occur exclusively within the kinase domain or affect splice sites. The CDKL5 protein is widely expressed in the brain, predominantly in neurons, with roles in cell proliferation, neuronal migration, axonal outgrowth, dendritic morphogenesis, and synapse development. The molecular biology of CDD is revealing opportunities in precision therapy, with phase 2 and 3 clinical trials underway or planned to assess disease specific and disease modifying treatments.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Pediatric Neurology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wolf P.
        • Haas H.L.
        Effects of diazepines and barbiturates on hippocampal recurrent inhibition.
        Arch Pharmacol. 1977; 299: 211-218
        • Weaving L.S.
        • Christodoulou J.
        • Williamson S.L.
        • et al.
        Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation.
        Am J Hum Genet. 2004; 75: 1079-1093
        • Laroche S.
        What can the long-term potentiation procedure tell us about the neural mechanisms of learning and memory?.
        in: Brain Plasticity, Learning and Memory. Advances in Behavioral Biology. Vol. 28. Plenum Press, New York1985: 139-155
        • Bahi-Buisson N.
        • Villeneuve N.
        • Caietta E.
        • et al.
        Recurrent mutations in the CDKL5 gene: genotype-phenotype relationships.
        Am J Med Genet A. 2012; 158A: 1612-1619
        • Majewska M.D.
        • Bell J.A.
        Ascorbic acid protects neurons from injury induced by glutamate and NMDA.
        Neuropharmacol Neurotoxicol. 1991; 1: 194-196
        • Paciorkowski A.R.
        • Seltzer L.E.
        • Neul J.L.
        Developmental encephalopathies.
        in: Swaiman K.F. Ashwal S. Ferriero D.M. Swaiman's Pediatric Neurology. 6th ed. Mosby, Philadelphia2018: 242-248
        • Lindy A.S.
        • Stosser M.B.
        • Butler E.
        • et al.
        Diagnostic outcomes for genetic testing of 70 genes in 8565 patients with epilepsy and neurodevelopmental disorders.
        Epilepsia. 2018; 59: 1062-1071
        • Kothur K.
        • Holman K.
        • Farnsworth E.
        • et al.
        Diagnostic yield of targeted massively parallel sequencing in children with epileptic encephalopathy.
        Seizure. 2018; 59: 132-140
        • Symonds J.D.
        • Zuberi S.M.
        • Vincent A.
        • et al.
        The Genetic and Autoimmune Childhood Epilepsy (GACE) Study.
        American Epilpesy Society, Washington, DC2017
        • Rosander C.
        • Hallbook T.
        Dravet syndrome in Sweden: a population-based study.
        Dev Med Child Neurol. 2015; 57: 628-633
        • Wu Y.W.
        • Sullivan J.
        • McDaniel S.S.
        • et al.
        Incidence of Dravet syndrome in a US Population.
        Pediatrics. 2015; 136: e1310-e1315
        • Laurvick C.L.
        • de Klerk N.
        • Bower C.
        • et al.
        Rett syndrome in Australia: a review of the epidemiology.
        J Pediatr. 2006; 148: 347-352
        • Fehr S.
        • Wilson M.
        • Downs J.
        • et al.
        The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy.
        Eur J Hum Genet. 2013; 21: 266-273
        • Fehr S.
        • Wong K.
        • Chin R.
        • et al.
        Seizure variables and their relationship to genotype and functional abilities in the CDKL5 disorder.
        Neurology. 2016; 87: 2206-2213
        • Olson H.E.
        • Poduri A.
        CDKL5 mutations in early onset epilepsy: case report and review of the literature.
        J Pediatr Epilepsy. 2012; 1: 151-159
        • Artuso R.
        • Mencarelli M.A.
        • Polli R.
        • et al.
        Early-onset seizure variant of Rett syndrome: definition of the clinical diagnostic criteria.
        Brain Dev. 2010; 32: 17-24
        • Bahi-Buisson N.
        • Nectoux J.
        • Rosas-Vargas H.
        • et al.
        Key clinical features to identify girls with CDKL5 mutations.
        Brain. 2008; 131: 2647-2661
        • Liang J.S.
        • Shimojima K.
        • Takayama R.
        • et al.
        CDKL5 alterations lead to early epileptic encephalopathy in both genders.
        Epilepsia. 2011; 52: 1835-1842
        • Mei D.
        • Marini C.
        • Novara F.
        • et al.
        Xp22.3 genomic deletions involving the CDKL5 gene in girls with early onset epileptic encephalopathy.
        Epilepsia. 2010; 51: 647-654
        • Nemos C.
        • Lambert L.
        • Giuliano F.
        • et al.
        Mutational spectrum of CDKL5 in early-onset encephalopathies: a study of a large collection of French patients and review of the literature.
        Clin Genet. 2009; 76: 357-371
        • Tao J.
        • Van Esch H.
        • Hagedorn-Greiwe M.
        • et al.
        Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5/STK9) gene are associated with severe neurodevelopmental retardation.
        Am J Hum Genet. 2004; 75: 1149-1154
        • Hector R.D.
        • Dando O.
        • Landsberger N.
        • et al.
        Characterisation of CDKL5 transcript isoforms in human and mouse.
        PLoS One. 2016; 11: e0157758
        • Chen Q.
        • Zhu Y.C.
        • Yu J.
        • et al.
        CDKL5, a protein associated with Rett syndrome, regulates neuronal morphogenesis via Rac1 signaling.
        J Neurosci. 2010; 30: 12777-12786
        • Ricciardi S.
        • Ungaro F.
        • Hambrock M.
        • et al.
        CDKL5 ensures excitatory synapse stability by reinforcing NGL-1-PSD95 interaction in the postsynaptic compartment and is impaired in patient iPSC-derived neurons.
        Nat Cell Biol. 2012; 14: 911-923
        • Rusconi L.
        • Salvatoni L.
        • Giudici L.
        • et al.
        CDKL5 expression is modulated during neuronal development and its subcellular distribution is tightly regulated by the C-terminal tail.
        J Biol Chem. 2008; 283: 30101-30111
        • Zhu Y.C.
        • Li D.
        • Wang L.
        • et al.
        Palmitoylation-dependent CDKL5-PSD-95 interaction regulates synaptic targeting of CDKL5 and dendritic spine development.
        Proc Natl Acad Sci U S A. 2013; 110: 9118-9123
        • Zhu Y.C.
        • Xiong Z.Q.
        Molecular and synaptic bases of CDKL5 disorder.
        Dev Neurobiol. 2019; 797: 8-19
        • Hector R.D.
        • Kalscheuer V.M.
        • Hennig F.
        • et al.
        CDKL5 variants: improving our understanding of a rare neurologic disorder.
        Neurol Genet. 2017; 3: e200
        • Kato T.
        • Morisada N.
        • Nagase H.
        • et al.
        Somatic mosaicism of a CDKL5 mutation identified by next-generation sequencing.
        Brain Dev. 2015; 37: 911-915
        • Hagebeuk E.E.
        • Marcelis C.L.
        • Alders M.
        • Kaspers A.
        • de Weerd A.W.
        Two siblings with a CDKL5 mutation: genotype and phenotype evaluation.
        J Child Neurol. 2015; 30: 1515-1519
        • Stosser M.B.
        • Lindy A.S.
        • Butler E.
        • et al.
        High frequency of mosaic pathogenic variants in genes causing epilepsy-related neurodevelopmental disorders.
        Genet Med. 2018; 20: 403-410
        • Bartnik M.
        • Derwinska K.
        • Gos M.
        • et al.
        Early-onset seizures due to mosaic exonic deletions of CDKL5 in a male and two females.
        Genet Med. 2011; 13: 447-452
        • Masliah-Plachon J.
        • Auvin S.
        • Nectoux J.
        • Fichou Y.
        • Chelly J.
        • Bienvenu T.
        Somatic mosaicism for a CDKL5 mutation as an epileptic encephalopathy in males.
        Am J Med Genet A. 2010; 152A: 2110-2111
        • Fehr S.
        • Leonard H.
        • Ho G.
        • et al.
        There is variability in the attainment of developmental milestones in the CDKL5 disorder.
        J Neurodev Disord. 2015; 7: 2
        • Szafranski P.
        • Golla S.
        • Jin W.
        • et al.
        Neurodevelopmental and neurobehavioral characteristics in males and females with CDKL5 duplications.
        Eur J Hum Genet. 2015; 23: 915-921
        • Seltzer L.E.
        • Ma M.
        • Ahmed S.
        • et al.
        Epilepsy and outcome in FOXG1-related disorders.
        Epilepsia. 2014; 55: 1292-1300
        • Brunetti-Pierri N.
        • Paciorkowski A.R.
        • Ciccone R.
        • et al.
        Duplications of FOXG1 in 14q12 are associated with developmental epilepsy, mental retardation, and severe speech impairment.
        Eur J Hum Genet. 2011; 19: 102-107
        • Lim Z.
        • Downs J.
        • Wong K.
        • Ellaway C.
        • Leonard H.
        Expanding the clinical picture of the MECP2 duplication syndrome.
        Clin Genet. 2017; 91: 557-563
        • Ramocki M.B.
        • Tavyev Y.J.
        • Peters S.U.
        The MECP2 duplication syndrome.
        Am J Med Genet A. 2010; 152A: 1079-1088
        • Fuchs C.
        • Rimondini R.
        • Viggiano R.
        • et al.
        Inhibition of GSK3beta rescues hippocampal development and learning in a mouse model of CDKL5 disorder.
        Neurobiol Dis. 2015; 82: 298-310
        • Zhou A.
        • Han S.
        • Zhou Z.J.
        Molecular and genetic insights into an infantile epileptic encephalopathy—CDKL5 disorder.
        Front Biol (Beijing). 2017; 12: 1-6
        • Okuda K.
        • Takao K.
        • Watanabe A.
        • Miyakawa T.
        • Mizuguchi M.
        • Tanaka T.
        Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory.
        PLoS One. 2018; 13: e0196587
        • Wang I.T.
        • Allen M.
        • Goffin D.
        • et al.
        Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice.
        Proc Natl Acad Sci U S A. 2012; 109: 21516-21521
        • Okuda K.
        • Kobayashi S.
        • Fukaya M.
        • et al.
        CDKL5 controls postsynaptic localization of GluN2B-containing NMDA receptors in the hippocampus and regulates seizure susceptibility.
        Neurobiol Dis. 2017; 106: 158-170
        • Baltussen L.L.
        • Negraes P.D.
        • Silvestre M.
        • et al.
        Chemical genetic identification of CDKL5 substrates reveals its role in neuronal microtubule dynamics.
        EMBO J. 2018; 37
        • Trazzi S.
        • Fuchs C.
        • Viggiano R.
        • et al.
        HDAC4: a key factor underlying brain developmental alterations in CDKL5 disorder.
        Hum Mol Genet. 2016; 25: 3887-3907
        • Mangatt M.
        • Wong K.
        • Anderson B.
        • et al.
        Prevalence and onset of comorbidities in the CDKL5 disorder differ from Rett syndrome.
        Orphanet J Rare Dis. 2016; 11: 39
        • Bahi-Buisson N.
        • Kaminska A.
        • Boddaert N.
        • et al.
        The three stages of epilepsy in patients with CDKL5 mutations.
        Epilepsia. 2008; 49: 1027-1037
        • Demarest S.
        • Olson H.E.
        • Parikh S.
        • Pestana-Knight E.
        • Benke T.A.
        Phenotypic characterization of CDKL5 deficiency syndrome.
        CDKL5 forum, London, UK2018
        • Grosso S.
        • Brogna A.
        • Bazzotti S.
        • Renieri A.
        • Morgese G.
        • Balestri P.
        Seizures and electroencephalographic findings in CDKL5 mutations: case report and review.
        Brain Dev. 2007; 29: 239-242
        • Klein K.M.
        • Yendle S.C.
        • Harvey A.S.
        • et al.
        A distinctive seizure type in patients with CDKL5 mutations: hypermotor-tonic-spasms sequence.
        Neurology. 2011; 76: 1436-1438
        • Melani F.
        • Mei D.
        • Pisano T.
        • et al.
        CDKL5 gene-related epileptic encephalopathy: electroclinical findings in the first year of life.
        Dev Med Child Neurol. 2011; 53: 354-360
        • Sartori S.
        • Di Rosa G.
        • Polli R.
        • et al.
        A novel CDKL5 mutation in a 47,XXY boy with the early-onset seizure variant of Rett syndrome.
        Am J Med Genet A. 2009; 149A: 232-236
        • Buoni S.
        • Zannolli R.
        • Colamaria V.
        • et al.
        Myoclonic encephalopathy in the CDKL5 gene mutation.
        Clin Neurophysiol. 2006; 117: 223-227
        • Pintaudi M.
        • Baglietto M.G.
        • Gaggero R.
        • et al.
        Clinical and electroencephalographic features in patients with CDKL5 mutations: two new Italian cases and review of the literature.
        Epilepsy Behav. 2008; 12: 326-331
        • Poonmaksatit S.
        • Zhang X.
        • Pestana-Knight E.
        Epilepsy and EEG findings in children with CDKL5 deficiency disorder under age 1.
        (American Epilepsy Society Annual Meeting 2018, New Orleans, LA)2018 (Abstract 1.140)
        • Muller A.
        • Helbig I.
        • Jansen C.
        • et al.
        Retrospective evaluation of low long-term efficacy of antiepileptic drugs and ketogenic diet in 39 patients with CDKL5-related epilepsy.
        Eur J Paediatr Neurol. 2016; 20: 147-151
        • Amin S.
        • Majumdar A.
        • Mallick A.A.
        • et al.
        Caregiver's perception of epilepsy treatment, quality of life and comorbidities in an international cohort of CDKL5 patients.
        Hippokratia. 2017; 21: 130-135
        • Olson H.E.
        • Demarest S.
        • Swanson L.
        • et al.
        Treatment response of epileptic spasms in CDKL5 disorder.
        (Americal Epilepsy Society Annual Meeting 2016, Houston, TX)2016
        • Knupp K.G.
        • Coryell J.
        • Nickels K.C.
        • et al.
        Response to treatment in a prospective national infantile spasms cohort.
        Ann Neurol. 2016; 79: 475-484
        • Lux A.
        • Edwards S.
        • Hancock E.
        • et al.
        The United Kingdom Infantile Spasms Study (UKISS) comparing hormone treatment with vigabatrin on developmental and epilepsy outcomes to age 14 months: a multicentre randomised trial.
        Lancet Neurol. 2005; 4: 712-717
        • O'Callaghan F.J.
        • Edwards S.W.
        • Alber F.D.
        • et al.
        Safety and effectiveness of hormonal treatment versus hormonal treatment with vigabatrin for infantile spasms (ICISS): a randomised, multicentre, open-label trial.
        Lancet Neurol. 2017; 16: 33-42
        • Lim Z.
        • Wong K.
        • Olson H.E.
        • Bergin A.M.
        • Downs J.
        • Leonard H.
        Use of the ketogenic diet to manage refractory epilepsy in CDKL5 disorder: experience of >100 patients.
        Epilepsia. 2017; 58: 1415-1422
        • Lim Z.
        • Wong K.
        • Downs J.
        • Bebbington K.
        • Demarest S.
        • Leonard H.
        Vagus nerve stimulation for the treatment of refractory epilepsy in the CDKL5 deficiency disorder.
        Epilepsy Res. 2018; 146: 36-40
        • Baba S.
        • Sugawara Y.
        • Moriyama K.
        • et al.
        Amelioration of intractable epilepsy by adjunct vagus nerve stimulation therapy in a girl with a CDKL5 mutation.
        Brain Dev. 2017; 39: 341-344
        • Bazin G.
        • Riley K.
        • Swanson L.
        • Bergin A.M.
        • Olson H.E.
        Use of ketogenic diet and vagal nerve stimulators for seizure management in CDKL5 disorder.
        (Translational Neuroscience Center Symposium, Boston Children’s Hospital, Boston, MA)2017
        • Archer H.L.
        • Evans J.
        • Edwards S.
        • et al.
        CDKL5 mutations cause infantile spasms, early onset seizures, and severe mental retardation in female patients.
        J Med Genet. 2006; 43: 729-734
        • Fehr S.
        • Downs J.
        • Ho G.
        • et al.
        Functional abilities in children and adults with the CDKL5 disorder.
        Am J Med Genet A. 2016; 170: 2860-2869
        • Russo S.
        • Marchi M.
        • Cogliati F.
        • et al.
        Novel mutations in the CDKL5 gene, predicted effects and associated phenotypes.
        Neurogenetics. 2009; 10: 241-250
        • Sartori S.
        • Polli R.
        • Bettella E.
        • et al.
        Pathogenic role of the X-linked cyclin-dependent kinase-like 5 and aristaless-related homeobox genes in epileptic encephalopathy of unknown etiology with onset in the first year of life.
        J Child Neurol. 2011; 26: 683-691
        • Elia M.
        • Falco M.
        • Ferri R.
        • et al.
        CDKL5 mutations in boys with severe encephalopathy and early-onset intractable epilepsy.
        Neurology. 2008; 71: 997-999
        • Fichou Y.
        • Bieth E.
        • Bahi-Buisson N.
        • et al.
        Re: CDKL5 mutations in boys with severe encephalopathy and early-onset intractable epilepsy.
        Neurology. 2009; 73 (author reply 78): 77-78
        • Stalpers X.L.
        • Spruijt L.
        • Yntema H.G.
        • Verrips A.
        Clinical phenotype of 5 females with a CDKL5 mutation.
        J Child Neurol. 2012; 27: 90-93
        • Paine S.M.
        • Munot P.
        • Carmichael J.
        • et al.
        The neuropathological consequences of CDKL5 mutation.
        Neuropathol Appl Neurobiol. 2012; 38: 744-747
        • Friedman S.
        • Moody E.
        • Katz T.
        Sleep issues in patients with CDKL5 gene mutation.
        (Pediatric Academic Societies Annual Meeting 2018, Toronto, Canada)2018
        • Cooper M.S.
        • McIntosh A.
        • Crompton D.E.
        • et al.
        Mortality in Dravet syndrome.
        Epilepsy Res. 2016; 128: 43-47
        • Johannesen K.M.
        • Gardella E.
        • Scheffer I.
        • et al.
        Early mortality in SCN8A-related epilepsies.
        Epilepsy Res. 2018; 143: 79-81
        • Verducci C.
        • Hussain F.
        • Friedman D.
        • Devinsky O.
        The North American SUDEP Registry (NASR): Preliminary descriptive analysis of SUDEP cases.
        (American Epilepsy Society Annual Meeting 2018, New Orleans, LA)2018 (Abstract 1.425)
        • Harden C.
        • Tomson T.
        • Gloss D.
        • et al.
        Practice guideline summary: sudden unexpected death in epilepsy incidence rates and risk factors: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology and the American Epilepsy Society.
        Epilepsy Curr. 2017; 17: 180-187
        • Akamine S.
        • Ishizaki Y.
        • Sakai Y.
        • et al.
        A male case with CDKL5-associated encephalopathy manifesting transient methylmalonic acidemia.
        Eur J Med Genet. 2018; 61: 451-454
        • Devinsky O.
        • Verducci C.
        • Thiele E.A.
        • et al.
        Open-label use of highly purified CBD (Epidiolex(R)) in patients with CDKL5 deficiency disorder and Aicardi, Dup15q, and Doose syndromes.
        Epilepsy Behav. 2018; 86: 131-137
        • Barbiero I.
        • Peroni D.
        • Tramarin M.
        • et al.
        The neurosteroid pregnenolone reverts microtubule derangement induced by the loss of a functional CDKL5-IQGAP1 complex.
        Hum Mol Genet. 2017; 26: 3520-3530
        • Tramarin M.
        • Rusconi L.
        • Pizzamiglio L.
        • et al.
        The antidepressant tianeptine reverts synaptic AMPA receptor defects caused by deficiency of CDKL5.
        Hum Mol Genet. 2018; 27: 2052-2063
        • Della Sala G.
        • Putignano E.
        • Chelini G.
        • et al.
        Dendritic spine instability in a mouse model of CDKL5 disorder is rescued by insulin-like growth factor 1.
        Biol Psychiatry. 2016; 80: 302-311
        • Trazzi S.
        • De Franceschi M.
        • Fuchs C.
        • et al.
        CDKL5 protein substitution therapy rescues neurological phenotypes of a mouse model of CDKL5 disorder.
        Hum Mol Genet. 2018; 27: 1572-1592
        • Berg A.T.
        • Berkovic S.F.
        • Brodie M.J.
        • et al.
        Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009.
        Epilepsia. 2010; 51: 676-685