Advertisement

Distribution of Intra-Thalamic Injury According to Nuclei and Vascular Territories in Children with Term Hypoxic-Ischemic Injury

      Abstract

      Purpose

      Term hypoxic-ischemic injury (HII) on MRI is described as the basal ganglia thalamus [BGT], watershed [WS], or combined [BGT/WS]. We aimed to determine differences between HII groups in intra-thalamic distribution.

      Methods

      Delayed MRIs of children with HII and thalamic injury were reviewed. Custom tools were placed over T2-W/FLAIR axial images to determine distribution of intra-thalamic injury: a) 6 subjective (whole/near-whole, central, anterior, posterior, lateral, medial), b) 4 nuclear (anterior [AN], ventrolateral [VLN], medial [MN], and pulvinar [PN]), and c) 3 arterial (thalamo perforating [TPA], thalamogeniculate [TGA], and posterior choroidal [PCA]) locations. We compared the frequency of injury of the above intra-thalamic locations between HII groups (BGT, WS, and BGT/WS) using Chi-square analysis.

      Results

      The 128 children (mean age at MRI 7.35±3.6 years) comprised 41% (n=53) BGT, 26% (n=33) WS and 33% (n=42) BGT/WS. The VLN was most frequently involved (66%, n=85), followed by PN (56%, n=72), MN (44%, n=56), and AN (28%, n=36). The TGA (93%, n=128), was the most frequent arterial region involved, followed by TPA (54%, n=69), and PCA (48%, n=61). VLN injury occurred more frequently in the BGT group (p<0.001); PN in the WS group (p<0.001); AN (p<0.001), MN (p<0.001), PN (p=0.001) and all nuclei together (p<0.001) in the BGT/WS group. The combination of all vascular territories was significantly associated with BGT/WS.

      Conclusion

      There are significant differences in intra-thalamic nuclear and arterial injuries between the different types of HII, likely due to different pathogenesis.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Pediatric Neurology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Nelson K.B.
        Neonatal encephalopathy: etiology and outcome.
        Dev Med Child Neurol. 2005; 47: 292https://doi.org/10.1017/s0012162205000563
        • Chang P.D.
        • Chow D.S.
        • Alber A.
        • Lin Y.-K.
        • Youn Y.A.
        Predictive Values of Location and Volumetric MRI Injury Patterns for Neurodevelopmental Outcomes in Hypoxic-Ischemic Encephalopathy Neonates.
        Brain Sci. 2020; 10https://doi.org/10.3390/brainsci10120991
        • Finer N.N.
        • Robertson C.M.
        • Richards R.T.
        • Pinnell L.E.
        • Peters K.L.
        Hypoxic-ischemic encephalopathy in term neonates: perinatal factors and outcome.
        J Pediatr. 1981; 98: 112-117https://doi.org/10.1016/s0022-3476(81)80555-0
        • Hwang M.
        • Haddad S.
        • Tierradentro-Garcia L.O.
        • Alves C.A.
        • Taylor G.A.
        • Darge K.
        Current understanding and future potential applications of cerebral microvascular imaging in infants.
        Br J Radiol. 2022; 9520211051https://doi.org/10.1259/bjr.20211051
        • Lyo S.
        • Tierradentro-Garcia L.O.
        • Viaene A.N.
        • Hwang M.
        High-resolution neurosonographic examination of the lenticulostriate vessels in neonates with hypoxic-ischemic encephalopathy.
        Br J Radiol. 2022; 20211141https://doi.org/10.1259/bjr.20211141
        • de Vries L.S.
        • Groenendaal F.
        Patterns of neonatal hypoxic-ischaemic brain injury.
        Neuroradiology. 2010; 52: 555-566https://doi.org/10.1007/s00234-010-0674-9
        • Smith J.
        • Solomons R.
        • Vollmer L.
        • Langenegger E.J.
        • Lotz J.W.
        • Andronikou S.
        • et al.
        Intrapartum Basal Ganglia-Thalamic Pattern Injury and Radiologically Termed “Acute Profound Hypoxic-Ischemic Brain Injury” Are Not Synonymous.
        Am J Perinatol. 2020; https://doi.org/10.1055/s-0040-1721692
        • Misser S.K.
        • Barkovich A.J.
        • Lotz J.W.
        • Archary M.
        A pictorial review of the pathophysiology and classification of the magnetic resonance imaging patterns of perinatal term hypoxic ischemic brain injury - What the radiologist needs to know….
        SA J Radiol. 2020; 24: 1915https://doi.org/10.4102/sajr.v24i1.1915
        • Montaldo P.
        • Ivain P.
        • Lally P.
        • Bassett P.
        • Pant S.
        • Oliveira V.
        • et al.
        White matter injury after neonatal encephalopathy is associated with thalamic metabolite perturbations.
        EBioMedicine. 2020; 52102663https://doi.org/10.1016/j.ebiom.2020.102663
        • Cowan F.
        • Rutherford M.
        • Groenendaal F.
        • Eken P.
        • Mercuri E.
        • Bydder G.M.
        • et al.
        Origin and timing of brain lesions in term infants with neonatal encephalopathy.
        Lancet. 2003; 361: 736-742https://doi.org/10.1016/S0140-6736(03)12658-X
        • Tuttle C.
        • Boto J.
        • Martin S.
        • Barnaure I.
        • Korchi A.M.
        • Scheffler M.
        • et al.
        Neuroimaging of acute and chronic unilateral and bilateral thalamic lesions.
        Insights Imaging. 2019; 10: 24https://doi.org/10.1186/s13244-019-0700-3
        • Harris P.A.
        • Taylor R.
        • Minor B.L.
        • Elliott V.
        • Fernandez M.
        • O’Neal L.
        • et al.
        The REDCap consortium: Building an international community of software platform partners.
        J Biomed Inform. 2019; 95103208https://doi.org/10.1016/j.jbi.2019.103208
        • Elsingergy M.M.
        • Worede F.
        • Venkatakrishna S.
        • Curic J.
        • Andronikou S.
        Magnetic resonance imaging diagnosis of causes of cerebral palsy in a developing country: A database of South African children.
        S Afr Med J. 2021; 111: 910-916
        • Elsingergy M.M.
        • Worede F.
        • Venkatakrishna S.
        • Andronikou S.
        Deep nuclei injury distribution in isolated “basal ganglia-thalamus” (BGT) versus combined “BGT and watershed” patterns of hypoxic-ischaemic injury (HII) in children with cerebral palsy.
        Clin Radiol. 2022; https://doi.org/10.1016/j.crad.2022.04.019
        • Parmentier C.E.J.
        • de Vries L.S.
        • Groenendaal F.
        Magnetic Resonance Imaging in (Near-)Term Infants with Hypoxic-Ischemic Encephalopathy.
        Diagnostics (Basel). 2022; 12https://doi.org/10.3390/diagnostics12030645
        • Chacko A.
        • Andronikou S.
        • Mian A.
        • Gonçalves F.G.
        • Vedajallam S.
        • Thai N.J.
        Cortical ischaemic patterns in term partial-prolonged hypoxic-ischaemic injury-the inter-arterial watershed demonstrated through atrophy, ulegyria and signal change on delayed MRI scans in children with cerebral palsy.
        Insights Imaging. 2020; 11: 53https://doi.org/10.1186/s13244-020-00857-8
        • Martinez-Biarge M.
        • Diez-Sebastian J.
        • Kapellou O.
        • Gindner D.
        • Allsop J.M.
        • Rutherford M.A.
        • et al.
        Predicting motor outcome and death in term hypoxic-ischemic encephalopathy.
        Neurology. 2011; 76: 2055-2061https://doi.org/10.1212/WNL.0b013e31821f442d
        • Li Y.
        • Wisnowski J.L.
        • Chalak L.
        • Mathur A.M.
        • McKinstry R.C.
        • Licona G.
        • et al.
        Mild hypoxic-ischemic encephalopathy (HIE): timing and pattern of MRI brain injury.
        Pediatr Res. 2022; https://doi.org/10.1038/s41390-022-02026-7
        • Stern J.A.
        • Elsingergy M.
        • Venkatakrishna S.S.B.
        • Worede F.
        • Curic J.
        • Andronikou S.
        Frequency of ulegyria on delayed MRI scans in children with term hypoxic-ischemic injury.
        Pediatr Radiol. 2022; https://doi.org/10.1007/s00247-022-05445-0
        • Wong D.S.T.
        • Poskitt K.J.
        • Chau V.
        • Miller S.P.
        • Roland E.
        • Hill A.
        • et al.
        Brain injury patterns in hypoglycemia in neonatal encephalopathy.
        AJNR Am J Neuroradiol. 2013; 34: 1456-1461https://doi.org/10.3174/ajnr.A3423
        • Tam E.W.Y.
        • Kamino D.
        • Shatil A.S.
        • Chau V.
        • Moore A.M.
        • Brant R.
        • et al.
        Hyperglycemia associated with acute brain injury in neonatal encephalopathy.
        Neuroimage Clin. 2021; 32102835https://doi.org/10.1016/j.nicl.2021.102835
        • Serra C.
        • Guida L.
        • Staartjes V.E.
        • Krayenbühl N.
        • Türe U.
        Historical controversies about the thalamus: from etymology to function.
        Neurosurg Focus. 2019; 47: E13https://doi.org/10.3171/2019.6.FOCUS19331
        • García-Cabezas M.Á.
        • Pérez-Santos I.
        • Cavada C.
        The epic of the thalamus in anatomical language.
        Front Neuroanat. 2021; 15744095https://doi.org/10.3389/fnana.2021.744095
        • Ton H.T.
        • Raffensperger K.
        • Shoykhet M.
        Early thalamic injury after resuscitation from severe asphyxial cardiac arrest in developing rats.
        Front Cell Dev Biol. 2021; 9737319https://doi.org/10.3389/fcell.2021.737319
        • Schmahmann J.D.
        Vascular syndromes of the thalamus.
        Stroke. 2003; 34: 2264-2278https://doi.org/10.1161/01.STR.0000087786.38997.9E
        • Tierradentro-García L.O.
        • Saade-Lemus S.
        • Freeman C.
        • Kirschen M.
        • Huang H.
        • Vossough A.
        • et al.
        Cerebral Blood Flow of the Neonatal Brain after Hypoxic-Ischemic Injury.
        Am J Perinatol. 2021; https://doi.org/10.1055/s-0041-1731278
        • Cao J.
        • Mu Y.
        • Xu X.
        • Li H.
        • Liu Z.
        • Cao M.
        • et al.
        Cerebral perfusion changes of the basal ganglia and thalami in full-term neonates with hypoxic-ischaemic encephalopathy: a three-dimensional pseudo continuous arterial spin labelling perfusion magnetic resonance imaging study.
        Pediatr Radiol. 2022; https://doi.org/10.1007/s00247-022-05344-4
        • Ginet V.
        • Pittet M.P.
        • Rummel C.
        • Osterheld M.C.
        • Meuli R.
        • Clarke P.G.H.
        • et al.
        Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic.
        Ann Neurol. 2014; 76: 695-711https://doi.org/10.1002/ana.24257
        • Sarioglu F.C.
        • Sarioglu O.
        • Guleryuz H.
        • Deliloglu B.
        • Tuzun F.
        • Duman N.
        • et al.
        The role of MRI-based texture analysis to predict the severity of brain injury in neonates with perinatal asphyxia.
        Br J Radiol. 2022; 9520210128https://doi.org/10.1259/bjr.20210128
        • Amarnath C.
        • Helen Mary T.
        • Periakarupan A.
        • Gopinathan K.
        • Philson J.
        Neonatal parechovirus leucoencephalitis- radiological pattern mimicking hypoxic-ischemic encephalopathy.
        Eur J Radiol. 2016; 85: 428-434https://doi.org/10.1016/j.ejrad.2015.11.038
        • Tierradentro-García L.O.
        • Zandifar A.
        • Kim J.D.U.
        • Andronikou S.
        Neuroimaging findings in parechovirus encephalitis: A case series of pediatric patients.
        Pediatr Neurol. 2022; 130: 41-45https://doi.org/10.1016/j.pediatrneurol.2022.02.005
        • Mohammad S.S.
        • Angiti R.R.
        • Biggin A.
        • Morales-Briceño H.
        • Goetti R.
        • Perez-Dueñas B.
        • et al.
        Magnetic resonance imaging pattern recognition in childhood bilateral basal ganglia disorders.
        Brain Commun. 2020; 2: fcaa178https://doi.org/10.1093/braincomms/fcaa178