Neonatal arterial ischemic stroke secondary to carotid artery dissection: a case report and systematic literature review

Laura Baggio, Margherita Nosadini, Maria Federica Pelizza, Jacopo Norberto Pin, Anna Zarpellon, Clarissa Tona, Giorgio Perilongo, Paolo Simioni, Irene Toldo, Giacomo Talenti, Stefano Sartori

PII: S0887-8994(22)00224-7
DOI: https://doi.org/10.1016/j.pediatrneurol.2022.10.008
Reference: PNU 10210

To appear in: Pediatric Neurology

Received Date: 18 August 2022
Revised Date: 1 September 2022
Accepted Date: 23 October 2022

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Inc.
TITLE

Neonatal arterial ischemic stroke secondary to carotid artery dissection: a case report and systematic literature review

Running title

Neonatal stroke due to carotid dissection

Authors

Laura Baggio1,2,^, Margherita Nosadini1,3,*, Maria Federica Pelizza1, Jacopo Norberto Pin1, Anna Zarpellon1, Clarissa Tona1, Giorgio Perilongo1, Paolo Simioni2, Irene Toldo1, Giacomo Talenti5, Stefano Sartori1,3,6

Affiliations

1Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy.
2Master in Pediatrics and Pediatric Subspecialties, University of Padova, Padova, Italy.
3Neuroimmunology group, Paediatric Research Institute “Città della Speranza”, Padova, Italy.
4General Internal Medicine and Thrombotic and Hemorrhagic Unit, University of Padua, Padua, Italy.
5Neuroradiology Unit, University Hospital of Padova, 35128 Padova, Italy.
6Department of Neuroscience, University of Padova, Padova, Italy.

^Joint first authors

These authors were equally responsible for the work described in this paper, contributed equally and share the first authorship

*Corresponding author
Margherita Nosadini, MD, PhD
Department of Women's and Children's Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padova, Padova, Italy.
Neuroimmunology group, Paediatric Research Institute “Città della Speranza”, Padova, Italy.
Via Giustiniani 3, 35128 Padova, Italy
margherita.nosadini@gmail.com

Laura Baggio, MD
Paediatric Neurology and Neurophysiology Unit, Department of Women's and Children's Health, University Hospital of Padova, Padova, Italy.
Master in Pediatrics and Pediatric Subspecialties, University of Padova, Padova, Italy.
baggio.laura7@gmail.com

Margherita Nosadini, MD PhD
Department of Women's and Children's Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padova, Padova, Italy.
Neuroimmunology group, Paediatric Research Institute “Città della Speranza”, Padova, Italy.
margherita.nosadini@gmail.com

Maria Federica Pelizza, MD
Department of Women's and Children's Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padova, Padova, Italy.
mariafederica.pelizza@aopd.veneto.it

Jacopo Norberto Pin, MD
Department of Women's and Children's Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padova, Padova, Italy.

jacoponorberto.pin@aopd.veneto.it

Anna Zarpellon, MD
Department of Women's and Children's Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padova, Padova, Italy.
anna.zarpellon@aopd.veneto.it

Clarissa Tona, MD
Department of Women's and Children's Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padova, Padova, Italy.
clarissa.tona@aopd.veneto.it

Giorgio Perilongo, MD PhD
Department of Women's and Children's Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padova, Padova, Italy.
giorgio.perilongo@unipd.it

Paolo Simioni, MD PhD
General Internal Medicine and Thrombotic and Hemorrhagic Unit, University of Padua, Padua, Italy.
paolo.simioni@unipd.it

Irene Toldo, MD PhD
Department of Women's and Children's Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padova, Padova, Italy.
irene.toldo@unipd.it
Giacomo Talenti, MD
Neuroradiology Unit, University Hospital of Padova, 35128 Padova, Italy.
giacomo.talenti@aopd.veneto.it

Stefano Sartori, MD PhD
Department of Women's and Children's Health, Paediatric Neurology and Neurophysiology Unit, University Hospital of Padova, Padova, Italy.
Neuroimmunology group, Paediatric Research Institute “Città della Speranza”, Padova, Italy.
stefano.sartori@unipd.it
ABSTRACT

Background. Carotid artery (CA) dissection is a rare aetiology of neonatal arterial ischemic stroke (NAIS). Diagnosis is challenging due to low level of suspicion and difficult interpretation of neonatal vascular studies.

Aim. To collect data on clinical-radiological presentation, treatment and outcome of NAIS due to CA dissection.

Methods. We describe one novel case and conduct a systematic literature review on NAIS attributed to CA dissection, complying with the PRISMA guidelines.

Results. 8 published cases of NAIS attributed to CA dissection were identified, and analysed with our case. All patients (9/9) were born at term, and 8/9 experienced instrumental/traumatic delivery or urgent caesarean section. None had foetal problems during pregnancy or thrombophilia. Signs and symptoms at presentation (between day of life 0-6) included: seizures (8/9), respiratory distress or irregular breathing (5/9), hyporeactivity, decreased consciousness or irritability (4/9), focal neurological signs (2/9). At MRI, stroke was unilateral in 7/9, extensive in 5/9. CA dissection was documented in 7/9 by neuroimaging or at post-mortem studies, and hypothesised by the treating physicians based on delivery and neuroradiology characteristics in the remaining 2/9. Antithrombotic treatment was used in 2/9. According to available follow-up, 1/8 died at age 7 days, 7/8 had neurologic or epileptic sequelae, and CA recanalisation occurred in 3/4.

Conclusions. NAIS attributed to CA dissection is rarely identified in the literature, often preceded by traumatic/instrumental delivery, presenting with seizures and systemic signs/symptoms, and characterised by extensive MRI lesions and neurologic sequelae. Definite evidence and recommendations on antithrombotic treatment are lacking.

Key words
Arterial ischemic stroke, neonatal, perinatal, carotid artery dissection, carotid occlusion, pediatric
Number of words in Abstract: 247
Number of words in Manuscript: 2599
Number of References: 30
Number of Tables: 1
Number of Figures: 3
Number of Supplementary Tables: 0
Number of Supplementary Materials: 0
Number of Supplementary Figures: 0
INTRODUCTION

Perinatal stroke comprises a group of cerebrovascular diseases occurring between 20 weeks of foetal life and 28 days postnatal life. Perinatal stroke can be categorised into arterial or venous, ischaemic or haemorrhagic, and also according to the timing of clinical presentation, into acute symptomatic perinatal strokes and presumed perinatal strokes [1,2]. Acute symptomatic perinatal strokes present shortly after onset, manifesting clinically within 28 days after birth typically with focal seizures; they can be distinguished into neonatal arterial ischaemic stroke (NAIS), neonatal cerebral sinovenous thrombosis and neonatal haemorrhagic stroke. Whereas, presumed perinatal strokes refer to chronic strokes diagnosed in a delayed manner and presumed to have occurred in the perinatal period, typically presenting clinically in infancy as hemiparetic cerebral palsy, pathological early handedness, developmental delay or seizures with imaging confirmation of remote stroke; they include arterial presumed perinatal ischaemic stroke, periventricular venous infarction and presumed perinatal haemorrhagic stroke [1-3] (Figure 1).

Figure 1

Figure 1. Subtypes of perinatal strokes. According to the timing of clinical presentation and diagnosis, perinatal stroke includes the categories of acute symptomatic perinatal strokes (neonatal arterial ischaemic stroke [NAIS], neonatal cerebral sinovenous thrombosis and neonatal haemorrhagic stroke), manifesting clinically within 28 days after birth typically with focal seizures, and presumed perinatal strokes (arterial presumed perinatal ischaemic stroke, periventricular venous infarction and presumed perinatal haemorrhagic stroke), typically presenting in infancy as hemiparetic cerebral palsy with imaging confirmation of remote stroke [1-3].

NAIS is characterised by a vascular focal brain ischaemic infarction corresponding to one or more arterial territories, and accounts for about 80% of acute neonatal strokes [1,2,4-6]. Despite advances in perinatal care and increased awareness, NAIS still represents an important cause of injury to the developing brain and accounts for a high morbidity rate.
Different risk factors for NAIS have been recognised, including both maternal and neonatal factors, none with a definite causative relation, and aetiology is considered to be multifactorial [2,7]. Thromboembolism arising from the placenta and direct vessel injury occurring during birth or due to an underlying arteriopathy are the two main pathophysiological processes hypothesised in NAIS [3,6,8]. Among the latter, carotid artery dissection is a rarely described aetiology in neonates, also in view of the challenges related to vascular imaging in this age.

In this study we report one novel case of NAIS related to a carotid artery dissection and we review the pertinent literature, in order to identify clinical and neuroradiological features suggestive for NAIS attributed to carotid artery dissection, and collect data on treatment and outcome.

METHODS

We retrospectively analysed data of patients with NAIS diagnosed at our tertiary care centre (Padova, Italy) with the aim of identifying the frequency of NAIS due to carotid artery dissection in our centre, and we describe a novel case of NAIS related to carotid artery dissection (the identity of this case cannot be retrieved from the data provided).

We subsequently conducted a systematic literature review of neonatal cases with NAIS due to carotid artery occlusion/dissection. The search was carried out in Pubmed independently by two researchers (LB and MN), up to date to 15.08.2022, with the search terms ((carotid dissection) or (carotid occlusion)) and (stroke or infarction or ischemia or ischemic) and (neonatal or neonate or newborn or perinatal). Articles in English, Italian, French and Spanish were included.

The available articles were filtered manually for patients in neonatal age (≤28 days) with stroke attributed to carotid artery dissection. Demographics, clinical, radiological and treatment data were collected. Studies on animals, and articles reporting neonatal patients with stroke and carotid occlusion not clearly attributed to dissection by the authors [9-14], or neonatal patients with carotid dissection in the absence of an associated stroke, were excluded [15] (Figure 2). The systematic literature review complies with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines.
RESULTS

Case presentation

From May 2010 to September 2021, among 49 cases of NAIS diagnosed in our tertiary care centre, carotid artery dissection was diagnosed in 1/49 (2%). This patient is described below.

A 40-gestational-week-old female was born in 2021 after an uneventful pregnancy from an urgent caesarean section due to a pathological cardiotocographic tracing. At birth she was hypotonic, hyporeactive and had respiratory distress. Apgar scores were 8-9-10 (at minutes 1, 5 and 10 respectively) and arterial cord pH was 7.09 with base excess -12.8 mmol/L. She was diagnosed with a mild hypoxic ischemic encephalopathy (Sarnat score 1). At birth, weight was 3970 g (90-97th centile), length 50 cm (10th centile), head circumference 35 cm (50-97th centile).

A transcranial ultrasound showed hyperechogenicity of the left parietal lobe. During her day of life (DOL) 1, she experienced focal electroclinical seizures, thus phenobarbital was started.
Brain magnetic resonance imaging (MRI) with MR angiography on DOL 1 (Figure 3) showed a left middle cerebral artery (MCA) acute cortico-subcortical ischaemic lesion in the insular, parietal, temporal lobes and in the striatum. A focal dissection in the proximal part of the left carotid artery was detected with secondary thrombosis of the left MCA.

Antithrombotic therapy with low molecular weight heparin 150 IU/kg/day was started.

Follow-up brain MRI on DOL 12 showed partial recanalization of the left M1 segment and complete re-canalisation of the left internal carotid artery (ICA).

The supra-aortic vessels and transcranial doppler sonography performed on DOL 15 were suggestive for an intimal flap of the extracranial portion of the left ICA.

At age 1 month, brain MRI showed further MCA recanalisation with mild residual stenosis of the proximal third of the M1 segment. Thus, heparin was discontinued and aspirin 2.5 mg/kg/day was administered for 1 month. Phenobarbital was discontinued at age 4 months due to the absence of seizures.

At age 7 months, the girl has right hemiparetic cerebral palsy with mild developmental delay and is not yet able to sit unsupported.

Figure 3
Figure 3

A. Brain MRI at day of life 1: left middle cerebral artery (MCA) acute cortical-subcortical ischemic lesion in the insular, parietal, temporal lobes and in the striatum.

C. MR Time of Flight Angiography shows focal flow signal defect (arrow) of the internal carotid artery (ICA) just after the bifurcation, in keeping with dissection.

D. Axial T1 fat-sat showing spontaneous arterial wall hyperintensity (arrow) in the left internal carotid artery (ICA) consistent with intramural hematoma.

Literature review

The literature search yielded a total of 375 results. Among these, 6 articles reporting a total of 8 cases of NAIS attributed to carotid dissection were identified [3, 16-20] (Figure 2). These 8 literature cases were analysed and described together with our novel patient below and in Table 1.

All cases (9/9) were born at term and 8/9 experienced an instrumental or traumatic delivery or an urgent caesarean section; foetal problems during pregnancy were not reported, and maternal problems during pregnancy were reported only in 1/9 case (hypertension); thrombophilia assessment was normal in 9/9.

Signs and symptoms at clinical presentation (ranging between DOL 0 and 6) included: seizures (8/9), respiratory distress or irregular breathing (5/9), hyporeactivity, decreased level of consciousness or irritability (4/9), focal neurological signs (unilateral hypotonia or hypertonia) (2/9).

The first brain parenchymal neuroimaging was cranial ultrasound in 5/9, showing pathological findings in all 5/5, cerebral computed tomography (CT) in 3/9, revealing an ischaemic lesion in 3/3, and brain MRI in 1/9. Brain MRI was carried out in all 9/9 patients, showing an ischaemic lesion in all (left-sided in 4/9, right-sided in 3/9 and bilateral in 2/9), described as extensive in 5/9.

Regarding vascular studies, doppler sonography was carried out in 6/9, detecting absent blood flow in the ICA and/or MCA in 4/6, and MR angiography was done in 9/9 cases, revealing pathological findings in all. Neuroradiology-demonstrated carotid artery dissection was reported in 6/9 patients including our case [16-20], and demonstrated at post-mortem studies in an additional 1/9 case [17]; in the remaining 2/9 cases, a
carotid artery dissection was hypothesised by the treating physicians based on the delivery modality and the characteristics of the cerebral lesion [3].

In 2/9 patients including our case [3], antithrombotic treatment was used, with aspirin and heparin followed by aspirin, respectively.

One patient died at DOL 7 [17]. Data on outcome were available in 7/8 remaining patients (duration of follow-up: range 0.5-8 years): 6/7 had hemiparetic/unilateral cerebral palsy, 5/7 had developmental delay and 3/7 developed epilepsy.

In patients with available follow-up neuroimaging, carotid recanalisation occurred in 3/4.
Table 1. Published cases of NAIS attributed to carotid artery dissection retrieved from the literature review, (n=8) and our case (n=1)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Sex, GA and weight at birth</th>
<th>Appgar score</th>
<th>UCBGA</th>
<th>Delivery</th>
<th>Risk factors</th>
<th>Timing and type of clinical presentation</th>
<th>Neuroimaging (timing)</th>
<th>Carotid artery occlusion</th>
<th>Neuro-radiological demonstration of dissection</th>
<th>Vascular territory involved by the stroke</th>
<th>Antithrombotic treatment</th>
<th>Age at last follow-up</th>
<th>Neurological outcome</th>
<th>Epilepsy</th>
<th>Vascular studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mann 1993</td>
<td>M, 42 gw 3300 g</td>
<td>Appgar s. 1-9</td>
<td>-</td>
<td>Urgent C-section after vacuum delivery attempt</td>
<td>Stained meconium</td>
<td>DOL 6: seizures and right hemiparesis involving the face, arm and leg</td>
<td>DUS (DOL 9): tapering of the left ICA immediately distal to the bifurcation, with undetectable flow 5 mm distal to the bifurcation</td>
<td>Left ICA (DUS, MRA)</td>
<td>Yes: string sign (DUS, MRA)</td>
<td>Left MCA</td>
<td>None</td>
<td>10 m</td>
<td>Outcome and epilepsy N/A</td>
<td>MRA (10 m): left ICA recanalization, persistent attenuation of the left MCA</td>
<td>MRI (10 m): encephalomalacia in the left MCA stroke region</td>
</tr>
<tr>
<td>Lequin 2004</td>
<td>F, at term 3240 g</td>
<td>Appgar s. 5-7</td>
<td>pH 7.16 BE 10.9</td>
<td>Instrumental (vacuum and forceps extraction)</td>
<td>None</td>
<td>DOL 0-2: irregular breathing due to pneumothorax</td>
<td>MRI (DOL 4): infarctions in the territory of left MCA and ACA, and right ACA and pial segments of the right MCA, caused by a complete occlusion of the ICA on the left and a partial occlusion on the right, best seen on the T2 weighted spin echo (SE) images. MRA (DOL 4): loss of signal in left carotid artery at petrous level (C2); the right carotid artery shows signal loss at supraclinoid level (C4)</td>
<td>Left ICA, complete Right ICA, partial (MRA)</td>
<td>No (post-mortem demonstration)</td>
<td>Left MCA + ACA Right MCA (extensive)</td>
<td>None</td>
<td>Died at DOL 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lequin 2004</td>
<td>M, 41 gw 4900 g</td>
<td>Appgar s. 9-10</td>
<td>-</td>
<td>Vaginal</td>
<td>Prolonged rupture of membranes Stained meconium</td>
<td>DOL 0 (2 h): right cervical lump, respiratory distress, irritability</td>
<td>CUS (DOL 3): slit ventricles and a slightly increased basal ganglia echogenicity, no midline shift</td>
<td>Right ICA</td>
<td>Yes: narrowing of the right CA (DUS, MRA)</td>
<td>Right MCA</td>
<td>None</td>
<td>4 y</td>
<td>Left spastic hemiplegia, language delay, special schooling</td>
<td>Epilepsy under control with CBZ</td>
<td></td>
</tr>
<tr>
<td>Hamida 2014</td>
<td>M, 38 gw 4600 g</td>
<td>Appgar s. 7-9</td>
<td>-</td>
<td>Instrumental</td>
<td>Poorly followed pregnancy, maternal hypertension Difficult extraction with right humeral fracture and right brachial palsy, shoulder dystocia</td>
<td>CT (DOL 1): hypodense areas in the right occipital and capsulo- lenticonu-caudate regions and left fronto-temporo-parietal regions, in keeping with ischaemic cerebrovascular accidents, with haemorrhagic changes on the left</td>
<td>Left CCA, ICA, ECA, complete Right ICA, partial (DUS, MRA)</td>
<td>Yes (MRA)</td>
<td>Right PCA + MCA Left MCA</td>
<td>None</td>
<td>11 m</td>
<td>Microcephaly, motor delay (not yet sitting unsupported), right upper limb paresis No epilepsy</td>
<td>DUS (1 m): recanalization of the carotids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Author(s)</td>
<td>Birth Weight</td>
<td>Apgar Score</td>
<td>Delivery Method</td>
<td>Associated Features</td>
<td>Imaging Findings</td>
<td>EEG Findings</td>
<td>Neurological Outcomes</td>
<td>Medical Outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piris-Borregas et al. 2015</td>
<td>4194 g</td>
<td>7</td>
<td>Normal</td>
<td>Hypoperfusion</td>
<td>No imaging findings</td>
<td>No abnormality</td>
<td>Right hemiparesis</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluss et al. 2016</td>
<td>3250 g</td>
<td>6</td>
<td>Vaginal</td>
<td>Hypoperfusion</td>
<td>No imaging findings</td>
<td>No abnormality</td>
<td>Right-sided spastic cerebral palsy</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benavente-Fernández et al. 2019</td>
<td>3550 g</td>
<td>7</td>
<td>Caesarean section</td>
<td>Hypoperfusion</td>
<td>No imaging findings</td>
<td>No abnormality</td>
<td>Left hemiparesis, left hemianopsia</td>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: ACA: anterior cerebral artery; ASA: acetazolamide; ASM: antiseizure medications; BE: base excess; CA: carotid artery; CCA: common carotid artery; C-section: caesarean section; CT: cerebral computed tomography; CUS: cerebral ultrasound; DOL: day of life; DUS: doppler ultrasound; ECA: external carotid artery; F: female; GA: gestational age; gw: gestational weeks; ICA: internal carotid artery; LEV: levetiracetam; m: months; M: male; MCA: median cerebral artery; MDZ: midazolam; MRA: cerebral magnetic resonance angiography; MRI: cerebral magnetic resonance imaging; N/A: not available; PB: phenobarbital; PCA: posterior cerebral artery; UCBGA: umbilical cord blood gas analysis; VPA: valproic acid; y: years.
Discussion

Neonatal arterial ischemic stroke (NAIS) secondary to carotid artery dissection is a rare clinical entity associated with direct vessel injury. We have described one novel case of NAIS due to carotid artery dissection and carried out a systematic review of the pertinent literature, identifying 8 additional published cases [3,16-20].

Our main results, derived from pooling together the literature patients and our novel case, show that most patients experienced an instrumental or traumatic delivery or an urgent caesarean section, and the great majority presented with seizures accompanied by systemic signs/symptoms such as respiratory distress, hyporeactivity, decreased consciousness or irritability. Neuroradiology was characterised in most cases by extensive ischemic brain lesions, mostly unilateral, with documented carotid artery dissection in the majority of cases, by neuroimaging or at post-mortem confirmation. Antithrombotic therapy was used in the minority, and outcome was characterised by severe neurological sequelae.

The low frequency of carotid artery dissection among NAIS cases in our centre (2%, n=1 case), and the very limited number of published cases of NAIS attributed to carotid artery dissection identified by our literature review (n=8 published cases), confirm that carotid artery dissection is a rare aetiology of NAIS.

It is well established that the detection of vascular lesions in general is infrequent in NAIS, with intraluminal thrombi in cerebral arteries, evidence for vessel wall injuries, or arteriopathy being seldom documented on angiographic sequences in neonatal age [3,8]. In a previous work collating novel and literature cases [3], patients with NAIS and documented carotid occlusion due to any cause were identified in less than 0.5% (n=16; of these, 6/16 cases were attributed to traumatic arterial injury) [3,16-18]. The frequency of MR angiography abnormalities in patients with NAIS was higher (35%, 29/81) in a recent monocentric retrospective analysis conducted by the International Pediatric Stroke Study, although it should be noticed that this included both pathological and not clearly pathological anatomical variants, with presumed ICA dissection in only 2/29 [21].

The radiological diagnosis of carotid artery dissection is based on the evidence of an intimal flap, vessel wall hematoma, double lumen and geometric changes at follow-up [22,23]. There are several reasons explaining the difficulties identifying these findings, and vascular lesions in general, in neonates. First of all, neonatal circulation assessment is challenging because of its anatomy, the smaller and/or more tortuous vessels and
the lower blood flow velocities compared with older children and adults. Secondly, stroke in newborns is characterised by peculiar elements such as quick thrombus resolution, thus the affected artery is often patent and cerebral vessels exhibit normal anatomy at the time of first acute imaging [3,8,24]. Further challenges in neonatal imaging may be represented by scanner unavailability or unsuitability for a neonate who is clinically unstable, or the absence of an expert team for critical ill neonates [9,25].

Moreover, angiographic sequences are often not routinely performed in stroke study protocols, especially at the cervical level [3], despite its importance has been previously highlighted [8]. For all these reasons, the use of cranial ultrasound and doppler sonography is supported as a useful, inexpensive, noninvasive and easily available tool for a first evaluation in newborns with concern for stroke, possibly to be identified also based on proposed prediction models [25]; MRI could be then performed for an essential more detailed definition [20].

As regards the general characteristics of our cohort, the high rate of instrumental or traumatic delivery is noteworthy. To date, the role of instrumental delivery as a risk factor for NAIS is uncertain. However, by analogy with childhood ischemic stroke, it could be reasonably supposed that mechanical stretching during traumatic delivery may cause or favour a direct arterial injury, especially in the presence of macrosomia and shoulder dystocia [3]. Furthermore, no foetal problems (and rare maternal problems) were reported during pregnancy, and thrombophilia screening was normal in our cohort, further supporting the hypothesis that stroke might have resulted from an insult occurring in the perinatal frame [8,26].

Similar to the previously mentioned cohort of NAIS due to carotid occlusion [3], and differently to more common NAIS aetiologies in which neonates mostly experience isolated seizures [27,28], most of our patients presented with seizures accompanied by other nonspecific signs and generalised illness (respiratory distress, hyporeactivity, depressed consciousness, irritability, hypotonia).

Indeed, it has been observed that occlusion of a large vessel such as carotid artery may cause a less transient vascular occlusion than thromboembolic mechanism, and this could be responsible for more extensive lesions, more frequently associated with encephalopathy or generalised signs/symptoms beside seizures, as opposite to isolated focal seizures as a more common presentation in other aetiologies of NAIS [3].

As previously reported in literature, we could find no side prevalence of the NAIS and no specific MRI lesion pattern, with possible involvement of different areas and of both superficial and deep territories [3].
All the patients of our series developed important neurological deficits such as unilateral cerebral palsy associated with a severe intellectual disability. When considering NAIS due to other (more frequent) aetiologies, disabilities in motor, learning, behaviour, language, and mental health are otherwise reported in different grades of severity, in relation with the infarction dimensions [2,4,26,29]. As regards epilepsy, it was reported at follow-up in nearly half of patients in our literature cohort, similarly to what reported for other types of arterial ischemic stroke, which is considered the most frequent stroke category associated with structural epilepsy development (50% of presumed perinatal AIS and 71% of NAIS), probably because of the involvement of the cerebral cortex.

To date, only supportive treatment is recommended for neonates with a first episode of NAIS, especially because of the low recurrence rate, except in cases with a documented thrombophilia or complex congenital heart disease [2,30], and thrombolysis and mechanical thrombectomy are rarely considered in neonates due to the lack of evidence and the small artery size in this age [2]. However, the potential utility of early antithrombotic treatment in NAIS due to a direct vascular lesion like dissection has been hypothesised [3,9,21], similar to recommendations for paediatric and adult stroke due to arteriopathy and in particular arterial wall injury such as dissection [2,30], but definite evidence and recommendations in neonatal age are lacking.

Therefore, the best treatment strategy in NAIS attributed to carotid artery dissection represents a knowledge gap due to the lack of evidence on the efficacy/safety profile and of definite recommendations, and a challenging decision for the treating physician which appears to be often taken on a case-by-case basis.

Limitations. The main limitations of our study include the heterogeneous data availability for the literature patients included due to the retrospective study design, and the limited number of cases identified, hindering definite conclusions. Furthermore, data collected refer to a large literature timeframe, during which knowledge on perinatal stroke, its diagnosis and management have improved substantially. Finally, as mentioned earlier, it should also be acknowledged that in our literature cohort carotid artery dissection was not documented at neuroimaging in all cases, and in 2/9 it was hypothesised by the authors of the articles included in the literature review based on the extension of the neuroradiological characteristics and the presence of risk factors.

Conclusions. Despite the above-mentioned limitations, in the present study we sought to collect data on NAIS attributed to carotid artery dissection, potentially useful for its characterisation and understanding.
Indeed, poor understanding of the underlying primary mechanism in stroke represents an important limitation for prevention, recognition and acute management.

Our study confirms the rarity of NAIS secondary to carotid artery dissection, the possible association with instrumental or traumatic delivery in the absence of maternal or foetal risk factors, the characteristic presentation with seizures associated with systemic signs/symptoms, the relatively large parenchymal lesions and the severe neurological sequelae. These factors may aid a timely clinical suspicion of this rare entity. More importantly, despite the intrinsic challenges in this age, neurovascular imaging remains be essential to identify the aetiologic mechanism in NAIS, including large or medium vessel occlusion, vascular anomalies such as tortuosity or malformation, and craniocervical arteriopathy including dissection [6].

Our study confirms and highlights a knowledge gap in the best treatment strategy for NAIS secondary to carotid artery dissection as regards the potential indication for antithrombotic treatment, whose efficacy and safety in this clinical setting is still to be properly assessed in larger studies.

Funding

The present study did not receive any funding.

Disclosures

The authors report no disclosures.

Acknowledgements

We thank the Master in Pediatrics and Pediatric Subspecialties, University of Padova, Italy.

Author contribution

Laura Baggio carried out the literature review and drafted the paper.

Margherita Nosadini carried out the literature review and contributed to the last version of the manuscript.
Stefano Sartori provided senior support for the article conceptualisation and contributed to the last version of the manuscript.

Giacomo Talenti provided neuroradiological guidance.

Maria Federica Pelizza, Jacopo Norberto Pin, Anna Zarpellon, Clarissa Tona, Irene Toldo, Giorgio Peri-longo, Paolo Simioni: supervised the literature review and contributed to the critical revision of the manuscript.
References

Highlights

- Neonatal arterial ischaemic stroke due to carotid artery dissection (NAIS-CAD) is rare
- Instrumental/traumatic delivery or urgent caesarean section often precede NAIS-CAD
- Most frequent clinical presentation of NAIS-CAD is with seizures and systemic signs/symptoms
- Neuroradiology is characterised in most cases by extensive ischaemic brain lesions
- Neurovascular imaging should be carried out in all patients with NAIS
- Definite evidence and recommendations on antithrombotic treatment for NAIS-CAD are lacking
Conflict of interest

The authors report no disclosures and no conflict of interest.