Advertisement

Cannabidiol Treatment for Neurologic, Cognitive, and Psychiatric Symptoms in Sturge-Weber syndrome

      Abstract

      Background

      A prior drug trial of cannabidiol for treatment- resistant epilepsy in patients with Sturge-Weber syndrome, a rare neurovascular condition, implicated improvements in neurologic, quality of life, neuropsychological, psychiatric, and motor outcomes.

      Methods

      Ten subjects with SWS brain involvement, controlled seizures, and cognitive impairments received study drug in this Johns Hopkins IRB approved, open-label, prospective drug trial. Oral cannabidiol was taken for six months (dose ranged from 5 mg/kg/day to 20 mg/kg/day). SWS neuroscore, port-wine birthmark score, quality of life, and adverse events were recorded every 4-12 weeks. Neuropsychological, psychiatric, and motor assessments were administered at baseline and six months follow-up. Most evaluations were conducted virtually due to the COVID-19 pandemic.

      Results

      Cannabidiol was generally well tolerated. Six subjects reported mild to moderate side effects related to study drug and continued on drug; one subject withdrew early due to moderate side effects. No seizures were reported. Significant improvements in SWS neuroscore, patient- reported quality of life (QOL), anxiety and emotional regulation, and report of bimanual ability use, were noted. Migraine QOL scores were high at baseline in these subjects, and remained high. Neuropsychological, other quality of life and motor outcomes remained stable, with some within subject improvements noted.

      Conclusions

      Further studies are needed to determine whether Epidiolex can improve quality of life and be beneficial for neurologic, anxiety, and motor impairments in SWS independent of seizure control. Large multi-centered studies are needed to extend these preliminary findings.

      Key Words

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Pediatric Neurology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Comi A.M.
        Update on Sturge–Weber syndrome: diagnosis, treatment, quantitative measures, and controversies.
        Lymphatic research and biology. 2007; 5: 257-264
        • Shirley M.D.
        • Tang H.
        • Gallione C.J.
        • et al.
        Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ.
        N Engl J Med. 2013; 368 ([published Online First: Epub Date]|): 1971-1979https://doi.org/10.1056/NEJMoa1213507
        • Huang L.
        • Couto J.A.
        • Pinto A.
        • et al.
        Somatic GNAQ Mutation is Enriched in Brain Endothelial Cells in Sturge-Weber Syndrome.
        Pediatr Neurol. 2017; 67 ([published Online First: Epub Date]|): 59-63https://doi.org/10.1016/j.pediatrneurol.2016.10.010
        • Polubothu S.
        • Al-Olabi L.
        • Carmen Del Boente M.
        • et al.
        GNA11 Mutation as a Cause of Sturge-Weber Syndrome: Expansion of the Phenotypic Spectrum of Galpha/11 Mosaicism and the Associated Clinical Diagnoses.
        J Invest Dermatol. 2020; 140 ([published Online First: Epub Date]|): 1110-1113https://doi.org/10.1016/j.jid.2019.10.019
        • Tillmann R.P.
        • Ray K.
        • Aylett S.E.
        Transient episodes of hemiparesis in Sturge Weber Syndrome - Causes, incidence and recovery.
        Eur J Paediatr Neurol. 2020; 25 ([published Online First: Epub Date]|): 90-96https://doi.org/10.1016/j.ejpn.2019.11.001
        • Namer I.J.
        • Battaglia F.
        • Hirsch E.
        • Constantinesco A.
        • Marescaux C.
        Subtraction ictal SPECT co-registered to MRI (SISCOM) in Sturge-Weber syndrome.
        Clin Nucl Med. 2005; 30 ([published Online First: Epub Date]|): 39-40https://doi.org/10.1097/00003072-200501000-00014
        • Sujansky E.
        • Conradi S.
        Sturge-Weber syndrome: age of onset of seizures and glaucoma and the prognosis for affected children.
        J Child Neurol. 1995; 10 ([published Online First: Epub Date]|): 49-58https://doi.org/10.1177/088307389501000113
        • Kavanaugh B.
        • Sreenivasan A.
        • Bachur C.
        • Papazoglou A.
        • Comi A.
        • Zabel T.A.
        [Formula: see text]Intellectual and adaptive functioning in Sturge-Weber Syndrome.
        Child Neuropsychol. 2016; 22 ([published Online First: Epub Date]|): 635-648https://doi.org/10.1080/09297049.2015.1028349
        • Lance E.I.
        • Lanier K.E.
        • Zabel T.A.
        • Comi A.M.
        Stimulant use in patients with sturge-weber syndrome: safety and efficacy.
        Pediatr Neurol. 2014; 51 ([published Online First: Epub Date]|): 675-680https://doi.org/10.1016/j.pediatrneurol.2013.11.009
        • Turin E.
        • Grados M.A.
        • Tierney E.
        • Ferenc L.M.
        • Zabel A.
        • Comi A.M.
        Behavioral and psychiatric features of Sturge-Weber syndrome.
        J Nerv Ment Dis. 2010; 198 ([published Online First: Epub Date]|): 905-913https://doi.org/10.1097/NMD.0b013e3181fe75ee
        • Kossoff E.H.
        • Balasta M.
        • Hatfield L.M.
        • Lehmann C.U.
        • Comi A.M.
        Self-reported treatment patterns in patients with Sturge-Weber syndrome and migraines.
        J. Child Neurol. 2007; 22 (doi: 22/6/720 [pii];10.1177/0883073807304008 [doi][published Online First: Epub Date]|): 720-726
        • Suskauer S.J.
        • Trovato M.K.
        • Zabel T.A.
        • Comi A.M.
        Physiatric findings in individuals with Sturge-Weber syndrome.
        Am J Phys Med Rehabil. 2010; 89 ([published Online First: Epub Date]|): 323-330https://doi.org/10.1097/PHM.0b013e3181ca23a8
        • Comi A.
        Current Therapeutic Options in Sturge-Weber Syndrome.
        Semin Pediatr Neurol. 2015; 22 ([published Online First: Epub Date]|): 295-301https://doi.org/10.1016/j.spen.2015.10.005
        • Kramer U.
        • Kahana E.
        • Shorer Z.
        • Ben-Zeev B.
        Outcome of infants with unilateral Sturge-Weber syndrome and early onset seizures.
        Dev Med Child Neurol. 2000; 42 ([published Online First: Epub Date]|): 756-759https://doi.org/10.1017/s0012162200001407
        • Devinsky O.
        • Patel A.D.
        • Cross J.H.
        • et al.
        Effect of Cannabidiol on Drop Seizures in the Lennox–Gastaut Syndrome.
        New England Journal of Medicine. 2018; 378 ([published Online First: Epub Date]|): 1888-1897https://doi.org/10.1056/NEJMoa1714631
        • Devinsky O.
        • Cross J.H.
        • Laux L.
        • et al.
        Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome.
        New England Journal of Medicine. 2017; 376 ([published Online First: Epub Date]|): 2011-2020https://doi.org/10.1056/NEJMoa1611618
        • Hess E.J.
        • Moody K.A.
        • Geffrey A.L.
        • et al.
        Cannabidiol as a new treatment for drug-resistant epilepsy in tuberous sclerosis complex.
        Epilepsia. 2016; 57 ([published Online First: Epub Date]|): 1617-1624https://doi.org/10.1111/epi.13499
        • Kaplan E.H.
        • Offermann E.A.
        • Sievers J.W.
        • Comi A.M.
        Cannabidiol Treatment for Refractory Seizures in Sturge-Weber Syndrome.
        Pediatr Neurol. 2017; 71 ([published Online First: Epub Date]|): 18-23 e2https://doi.org/10.1016/j.pediatrneurol.2017.02.009
        • Dymerska M.
        • Kirkorian A.Y.
        • Offermann E.A.
        • Lin D.D.
        • Comi A.M.
        • Cohen B.A.
        Size of facial port-wine birthmark may predict neurologic outcome in Sturge-Weber syndrome.
        The Journal of pediatrics. 2017; 188 (205-09. e1)
        • Lin D.D.
        • Barker P.B.
        • Hatfield L.A.
        • Comi A.M.
        Dynamic MR perfusion and proton MR spectroscopic imaging in Sturge-Weber syndrome: correlation with neurological symptoms.
        J Magn Reson Imaging. 2006; 24 ([published Online First: Epub Date]|): 274-281https://doi.org/10.1002/jmri.20627
        • Jansen F.E.
        • van Huffelen A.C.
        • Witkamp T.
        • et al.
        Diazepam-enhanced beta activity in Sturge Weber syndrome: its diagnostic significance in comparison with MRI.
        Clin Neurophysiol. 2002; 113 ([published Online First: Epub Date]|): 1025-1029https://doi.org/10.1016/s1388-2457(02)00105-0
        • Kelley T.M.
        • Hatfield L.A.
        • Lin D.D.
        • Comi A.M.
        Quantitative analysis of cerebral cortical atrophy and correlation with clinical severity in unilateral Sturge-Weber syndrome.
        J Child Neurol. 2005; 20 ([published Online First: Epub Date]|): 867-870https://doi.org/10.1177/08830738050200110201
        • Hatfield L.A.
        • Crone N.E.
        • Kossoff E.H.
        • et al.
        Quantitative EEG asymmetry correlates with clinical severity in unilateral Sturge-Weber syndrome.
        Epilepsia. 2007; 48 ([published Online First: Epub Date]|): 191-195https://doi.org/10.1111/j.1528-1167.2006.00630.x
        • Sebold A.J.
        • Day A.M.
        • Ewen J.
        • et al.
        Sirolimus Treatment in Sturge-Weber Syndrome.
        Pediatr Neurol. 2021; 115 ([published Online First: Epub Date]|): 29-40https://doi.org/10.1016/j.pediatrneurol.2020.10.013
        • Goodwin S.W.
        • Lambrinos A.I.
        • Ferro M.A.
        • Sabaz M.
        • Speechley K.N.
        Development and assessment of a shortened Quality of Life in Childhood Epilepsy Questionnaire (QOLCE-55).
        Epilepsia. 2015; 56 ([published Online First: Epub Date]|): 864-872https://doi.org/10.1111/epi.13000
        • Cramer J.A.
        • Westbrook L.E.
        • Devinsky O.
        • Perrine K.
        • Glassman M.B.
        • Camfield C.
        Development of the Quality of Life in Epilepsy Inventory for Adolescents: the QOLIE-AD-48.
        Epilepsia. 1999; 40 ([published Online First: Epub Date]|): 1114-1121https://doi.org/10.1111/j.1528-1157.1999.tb00828.x
        • Cramer J.A.
        • Van Hammee G.
        • Group N.S.
        Maintenance of improvement in health-related quality of life during long-term treatment with levetiracetam.
        Epilepsy Behav. 2003; 4 ([published Online First: Epub Date]|): 118-123https://doi.org/10.1016/s1525-5050(03)00004-0
        • Jacobson N.S.
        • Truax P.
        Clinical significance: a statistical approach to defining meaningful change in psychotherapy research.
        J Consult Clin Psychol. 1991; 59 ([published Online First: Epub Date]|): 12-19https://doi.org/10.1037//0022-006x.59.1.12
        • Weintraub S.
        • Dikmen S.S.
        • Heaton R.K.
        • et al.
        Cognition assessment using the NIH Toolbox.
        Neurology. 2013; 80 ([published Online First: Epub Date]|): S54-S64https://doi.org/10.1212/WNL.0b013e3182872ded
        • Reidy T.G.
        • Suskauer S.J.
        • Bachur C.D.
        • McCulloch C.E.
        • Comi A.M.
        Preliminary reliability and validity of a battery for assessing functional skills in children with Sturge-Weber syndrome.
        Childs Nerv Syst. 2014; 30 ([published Online First: Epub Date]|): 2027-2036https://doi.org/10.1007/s00381-014-2573-6
        • Bleyenheuft Y.
        • Gordon A.M.
        • Rameckers E.
        • Thonnard J.L.
        • Arnould C.
        Measuring changes of manual ability with ABILHAND-Kids following intensive training for children with unilateral cerebral palsy.
        Dev Med Child Neurol. 2017; 59 ([published Online First: Epub Date]|): 505-511https://doi.org/10.1111/dmcn.13338
        • Fragala-Pinkham M.A.
        • Dumas H.M.
        • Lombard K.A.
        • O'Brien J.E.
        Responsiveness of the Pediatric Evaluation of Disability Inventory-Computer Adaptive Test in measuring functional outcomes for inpatient pediatric rehabilitation.
        J Pediatr Rehabil Med. 2016; 9 ([published Online First: Epub Date]|): 215-222https://doi.org/10.3233/PRM-160382
        • Koman L.A.
        • Williams R.M.
        • Evans P.J.
        • et al.
        Quantification of upper extremity function and range of motion in children with cerebral palsy.
        Dev Med Child Neurol. 2008; 50 ([published Online First: Epub Date]|): 910-917https://doi.org/10.1111/j.1469-8749.2008.03098.x
        • Booz G.W.
        Cannabidiol as an emergent therapeutic strategy for lessening the impact of inflammation on oxidative stress.
        Free Radic Biol Med. 2011; 51 ([published Online First: Epub Date]|): 1054-1061https://doi.org/10.1016/j.freeradbiomed.2011.01.007
        • Leo A.
        • Russo E.
        • Elia M.
        Cannabidiol and epilepsy: Rationale and therapeutic potential.
        Pharmacol Res. 2016; 107 ([published Online First: Epub Date]|): 85-92https://doi.org/10.1016/j.phrs.2016.03.005
        • Comi A.M.
        Presentation, diagnosis, pathophysiology and treatment of the neurologic features of Sturge-Weber Syndrome.
        The neurologist. 2011; 17: 179
        • Mecha M.
        • Feliu A.
        • Inigo P.M.
        • Mestre L.
        • Carrillo-Salinas F.J.
        • Guaza C.
        Cannabidiol provides long-lasting protection against the deleterious effects of inflammation in a viral model of multiple sclerosis: a role for A2A receptors.
        Neurobiol Dis. 2013; 59 ([published Online First: Epub Date]|): 141-150https://doi.org/10.1016/j.nbd.2013.06.016
        • Garcia-Arencibia M.
        • Gonzalez S.
        • de Lago E.
        • Ramos J.A.
        • Mechoulam R.
        • Fernandez-Ruiz J.
        Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson's disease: importance of antioxidant and cannabinoid receptor-independent properties.
        Brain Res. 2007; 1134 ([published Online First: Epub Date]|): 162-170https://doi.org/10.1016/j.brainres.2006.11.063
        • Castillo A.
        • Tolon M.R.
        • Fernandez-Ruiz J.
        • Romero J.
        • Martinez-Orgado J.
        The neuroprotective effect of cannabidiol in an in vitro model of newborn hypoxic-ischemic brain damage in mice is mediated by CB(2) and adenosine receptors.
        Neurobiol Dis. 2010; 37 ([published Online First: Epub Date]|): 434-440https://doi.org/10.1016/j.nbd.2009.10.023
        • Esposito G.
        • Scuderi C.
        • Savani C.
        • et al.
        Cannabidiol in vivo blunts beta-amyloid induced neuroinflammation by suppressing IL-1beta and iNOS expression.
        Br J Pharmacol. 2007; 151 ([published Online First: Epub Date]|): 1272-1279https://doi.org/10.1038/sj.bjp.0707337
        • Whyte L.S.
        • Ryberg E.
        • Sims N.A.
        • et al.
        The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo.
        Proc Natl Acad Sci U S A. 2009; 106 ([published Online First: Epub Date]|): 16511-16516https://doi.org/10.1073/pnas.0902743106
        • Bakas T.
        • van Nieuwenhuijzen P.S.
        • Devenish S.O.
        • McGregor I.S.
        • Arnold J.C.
        • Chebib M.
        The direct actions of cannabidiol and 2-arachidonoyl glycerol at GABAA receptors.
        Pharmacol Res. 2017; 119 ([published Online First: Epub Date]|): 358-370https://doi.org/10.1016/j.phrs.2017.02.022
        • Ebrahimi-Fakhari D.
        • Agricola K.D.
        • Tudor C.
        • Krueger D.
        • Franz D.N.
        Cannabidiol Elevates Mechanistic Target of Rapamycin Inhibitor Levels in Patients With Tuberous Sclerosis Complex.
        Pediatr Neurol. 2020; 105 ([published Online First: Epub Date]|): 59-61https://doi.org/10.1016/j.pediatrneurol.2019.11.017
        • Geffrey A.L.
        • Pollack S.F.
        • Bruno P.L.
        • Thiele E.A.
        Drug-drug interaction between clobazam and cannabidiol in children with refractory epilepsy.
        Epilepsia. 2015; 56 ([published Online First: Epub Date]|): 1246-1251https://doi.org/10.1111/epi.13060
        • Gaston T.E.
        • Bebin E.M.
        • Cutter G.R.
        • Liu Y.
        • Szaflarski J.P.
        • Program U.C.
        Interactions between cannabidiol and commonly used antiepileptic drugs.
        Epilepsia. 2017; 58 ([published Online First: Epub Date]|): 1586-1592https://doi.org/10.1111/epi.13852
        • Rosenberg E.C.
        • Louik J.
        • Conway E.
        • Devinsky O.
        • Friedman D.
        Quality of Life in Childhood Epilepsy in pediatric patients enrolled in a prospective, open-label clinical study with cannabidiol.
        Epilepsia. 2017; 58 ([published Online First: Epub Date]|): e96-e100https://doi.org/10.1111/epi.13815
        • Baron E.P.
        Comprehensive Review of Medicinal Marijuana, Cannabinoids, and Therapeutic Implications in Medicine and Headache: What a Long Strange Trip It's Been.
        Headache. 2015; 55 ([published Online First: Epub Date]|): 885-916https://doi.org/10.1111/head.12570
        • Urits I.
        • Gress K.
        • Charipova K.
        • et al.
        Use of cannabidiol (CBD) for the treatment of chronic pain.
        Best Pract Res Clin Anaesthesiol. 2020; 34 ([published Online First: Epub Date]|): 463-477https://doi.org/10.1016/j.bpa.2020.06.004
        • Papagianni E.P.
        • Stevenson C.W.
        Cannabinoid Regulation of Fear and Anxiety: an Update.
        Curr Psychiatry Rep. 2019; 21 ([published Online First: Epub Date]|): 38https://doi.org/10.1007/s11920-019-1026-z
        • Jurkus R.
        • Day H.L.
        • Guimaraes F.S.
        • Lee J.L.
        • Bertoglio L.J.
        • Stevenson C.W.
        Cannabidiol Regulation of Learned Fear: Implications for Treating Anxiety-Related Disorders.
        Front Pharmacol. 2016; 7 ([published Online First: Epub Date]|): 454https://doi.org/10.3389/fphar.2016.00454
        • Blessing E.M.
        • Steenkamp M.M.
        • Manzanares J.
        • Marmar C.R.
        Cannabidiol as a Potential Treatment for Anxiety Disorders.
        Neurotherapeutics. 2015; 12 ([published Online First: Epub Date]|): 825-836https://doi.org/10.1007/s13311-015-0387-1
        • Bergamaschi M.M.
        • Queiroz R.H.
        • Chagas M.H.
        • et al.
        Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-naive social phobia patients.
        Neuropsychopharmacology. 2011; 36 ([published Online First: Epub Date]|): 1219-1226https://doi.org/10.1038/npp.2011.6
        • Crippa J.A.
        • Derenusson G.N.
        • Ferrari T.B.
        • et al.
        Neural basis of anxiolytic effects of cannabidiol (CBD) in generalized social anxiety disorder: a preliminary report.
        J Psychopharmacol. 2011; 25 ([published Online First: Epub Date]|): 121-130https://doi.org/10.1177/0269881110379283
        • Thompson M.D.
        • Martin R.C.
        • Grayson L.P.
        • et al.
        Cognitive function and adaptive skills after a one-year trial of cannabidiol (CBD) in a pediatric sample with treatment-resistant epilepsy.
        Epilepsy Behav. 2020; 111 ([published Online First: Epub Date]|)107299https://doi.org/10.1016/j.yebeh.2020.107299
        • Martin R.C.
        • Gaston T.E.
        • Thompson M.
        • et al.
        Cognitive functioning following long-term cannabidiol use in adults with treatment-resistant epilepsy.
        Epilepsy Behav. 2019; 97 ([published Online First: Epub Date]|): 105-110https://doi.org/10.1016/j.yebeh.2019.04.044
        • Metternich B.
        • Wagner K.
        • Geiger M.J.
        • Hirsch M.
        • Schulze-Bonhage A.
        • Klotz K.A.
        Cognitive and behavioral effects of cannabidiol in patients with treatment-resistant epilepsy.
        Epilepsy Behav. 2021; 114 ([published Online First: Epub Date]|)107558https://doi.org/10.1016/j.yebeh.2020.107558
        • Peres F.F.
        • Levin R.
        • Suiama M.A.
        • et al.
        Cannabidiol Prevents Motor and Cognitive Impairments Induced by Reserpine in Rats.
        Front Pharmacol. 2016; 7 ([published Online First: Epub Date]|): 343https://doi.org/10.3389/fphar.2016.00343
        • Kwiatkoski M.
        • Guimaraes F.S.
        • Del-Bel E.
        Cannabidiol-treated rats exhibited higher motor score after cryogenic spinal cord injury.
        Neurotox Res. 2012; 21 ([published Online First: Epub Date]|): 271-280https://doi.org/10.1007/s12640-011-9273-8
        • Avraham Y.
        • Grigoriadis N.
        • Poutahidis T.
        • et al.
        Cannabidiol improves brain and liver function in a fulminant hepatic failure-induced model of hepatic encephalopathy in mice.
        Br J Pharmacol. 2011; 162 ([published Online First: Epub Date]|): 1650-1658https://doi.org/10.1111/j.1476-5381.2010.01179.x
        • Santos N.A.
        • Martins N.M.
        • Sisti F.M.
        • et al.
        The neuroprotection of cannabidiol against MPP(+)-induced toxicity in PC12 cells involves trkA receptors, upregulation of axonal and synaptic proteins, neuritogenesis, and might be relevant to Parkinson's disease.
        Toxicol In Vitro. 2015; 30 ([published Online First: Epub Date]|): 231-240https://doi.org/10.1016/j.tiv.2015.11.004
        • Li H.
        • Kong W.
        • Chambers C.R.
        • et al.
        The non-psychoactive phytocannabinoid cannabidiol (CBD) attenuates pro-inflammatory mediators, T cell infiltration, and thermal sensitivity following spinal cord injury in mice.
        Cell Immunol. 2018; 329 ([published Online First: Epub Date]|): 1-9https://doi.org/10.1016/j.cellimm.2018.02.016
        • Hayakawa K.
        • Mishima K.
        • Irie K.
        • et al.
        Cannabidiol prevents a post-ischemic injury progressively induced by cerebral ischemia via a high-mobility group box1-inhibiting mechanism.
        Neuropharmacology. 2008; 55 ([published Online First: Epub Date]|): 1280-1286https://doi.org/10.1016/j.neuropharm.2008.06.040