Identification of novel gene variants in children with drug-resistant epilepsy: Expanding the genetic spectrum



      Resistance to anti-seizure drugs is an important problem in the treatment of individuals with epilepsy. Identifying the molecular etiology of drug-resistant epilepsy (DRE) is crucial for better management of epilepsy. Here, we explore the utility of whole exome sequencing (WES) to identify causative gene variants in children with DRE.


      Forty-five children with DRE who underwent WES tests were included. Genetic examination of all patients included chromosomal analysis and clinical chromosomal microarray followed by WES. The identified variants by WES analysis were classified for pathogenicity based on the American College of Medical Genetics and Genomics guidelines and in silico protein prediction tools.


      The overall diagnostic yield was 55.5% (25/45). A total of 26 variants spanning 22 genes were identified in 25 patients. Of note, only 19 of these genes were examined as novel. Ten patients (22.2%) had a pathogenic or likely pathogenic variant. There was a trend associated with a diagnostic genetic test result in girls compared to boys in DRE (p=0.028).


      Our findings expand the mutational spectrum of genes related to DRE. In order to form disease-specific treatment in children with DRE, the WES analysis should be included in the diagnostic algorithm because of its high diagnostic efficiency.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Pediatric Neurology
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Ono T.
        • Galanopoulou A.S.
        Epilepsy and epileptic syndrome.
        Adv Exp Med Biol. 2012; 724: 99-113
        • Fiest K.M.
        • Sauro K.M.
        • Wiebe S.
        • Patten S.B.
        • Kwon C.S.
        • Dykeman J.
        • et al.
        Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies.
        Neurology. 2017; 88: 296-303
        • Helbig I.
        • Lowenstein D.H.
        Genetics of the epilepsies: where are we and where are we going?.
        Curr Opin Neurol. 2013; 26: 179-185
        • Fattorusso A.
        • Matricardi S.
        • Mencaroni E.
        • Dell'Isola G.B.
        • Di Cara G.
        • Striano P.
        • et al.
        The Pharmacoresistant Epilepsy: An Overview on Existant and New Emerging Therapies.
        Front Neurol. 2021; 12674483
        • Brodie M.J.
        • Barry S.J.
        • Bamagous G.A.
        • Norrie J.D.
        • Kwan P.
        Patterns of treatment response in newly diagnosed epilepsy.
        Neurology. 2012; 78: 1548-1554
        • Lin C.H.
        • Chou I.C.
        • Hong S.Y.
        Genetic factors and the risk of drug-resistant epilepsy in young children with epilepsy and neurodevelopment disability: A prospective study and updated meta-analysis.
        Medicine (Baltimore). 2021; 100e25277
        • Helbig I.
        • Tayoun A.A.
        Understanding Genotypes and Phenotypes in Epileptic Encephalopathies.
        Mol Syndromol. 2016; 7: 172-181
        • Wolking S.
        • Campbell C.
        • Stapleton C.
        • McCormack M.
        • Delanty N.
        • Depondt C.
        • et al.
        Role of Common Genetic Variants for Drug-Resistance to Specific Anti-Seizure Medications.
        Front Pharmacol. 2021; 12688386
        • Mefford H.C.
        Clinical Genetic Testing in Epilepsy.
        Epilepsy Curr. 2015; 15: 197-201
        • Sánchez Fernández I.
        • Loddenkemper T.
        • Gaínza-Lein M.
        • Sheidley B.R.
        • Poduri A.
        Diagnostic yield of genetic tests in epilepsy: A meta-analysis and cost-effectiveness study.
        Neurology. 2019; 92: e418-e428
        • Rochtus A.
        • Olson H.E.
        • Smith L.
        • Keith L.G.
        • El Achkar C.
        • Taylor A.
        • et al.
        Genetic diagnoses in epilepsy: The impact of dynamic exome analysis in a pediatric cohort.
        Epilepsia. 2020; 61: 249-258
        • Costain G.
        • Cordeiro D.
        • Matviychuk D.
        • Mercimek-Andrews S.
        Clinical Application of Targeted Next-Generation Sequencing Panels and Whole Exome Sequencing in Childhood Epilepsy.
        Neuroscience. 2019; 418: 291-310
        • Specchio N.
        • Wirrell E.C.
        • Scheffer I.E.
        • Nabbout R.
        • Riney K.
        • Samia P.
        • et al.
        International League Against Epilepsy classification and definition of epilepsy syndromes with onset in childhood: Position paper by the ILAE Task Force on Nosology and Definitions.
        Epilepsia. 2022; 63: 1398-1442
        • Wang K.
        • Li M.
        • Hakonarson H.
        ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data.
        Nucleic Acids Res. 2010; 38: e164
        • Guery D.
        • Rheims S.
        Clinical Management of Drug Resistant Epilepsy: A Review on Current Strategies.
        Neuropsychiatr Dis Treat. 2021; 17: 2229-2242
        • Park K.M.
        • Kim S.E.
        • Lee B.I.
        Antiepileptic Drug Therapy in Patients with Drug-Resistant Epilepsy.
        J Epilepsy Res. 2019; 9: 14-26
        • Löscher W.
        • Potschka H.
        • Sisodiya S.M.
        • Vezzani A.
        Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options.
        Pharmacol Rev. 2020; 72: 606-638
        • Bazhanova E.D.
        • Kozlov A.A.
        • Litovchenko A.V.
        Mechanisms of Drug Resistance in the Pathogenesis of Epilepsy: Role of Neuroinflammation. A Literature Review.
        Brain Sci. 2021; 11
        • Myers C.T.
        • Mefford H.C.
        Advancing epilepsy genetics in the genomic era.
        Genome Med. 2015; 7: 91
      1. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies.
        Nat Commun. 2018; 9: 5269
      2. Hebbar M, Mefford HC. Recent advances in epilepsy genomics and genetic testing. F1000Res. 2020;9.

      3. Hunter SE, Jalazo E, Felton TR, Heinzen EL, Shiloh-Malawsky Y. Epilepsy Genetics: Advancements in the Field and Impact on Clinical Practice. In: Czuczwar SJ, editor. Epilepsy. Brisbane (AU): Exon Publications. Copyright: The Authors.; The authors confirm that the materials included in this chapter do not violate copyright laws. Where relevant, appropriate permissions have been obtained from the original copyright holder(s), and all original sources have been appropriately acknowledged or referenced.; 2022.

        • Cárdenas-Rodríguez N.
        • Carmona-Aparicio L.
        • Pérez-Lozano D.L.
        • Ortega-Cuellar D.
        • Gómez-Manzo S.
        • Ignacio-Mejía I.
        Genetic variations associated with pharmacoresistant epilepsy (Review).
        Mol Med Rep. 2020; 21: 1685-1701
        • Feng W.
        • Mei S.
        • Zhu L.
        • Yu Y.
        • Yang W.
        • Gao B.
        • et al.
        Effects of UGT2B7, SCN1A and CYP3A4 on the therapeutic response of sodium valproate treatment in children with generalized seizures.
        Seizure. 2018; 58: 96-100
        • Liu M.
        • Mao J.
        • Xu H.
        • Wang J.
        • Zhao P.
        • Xu Q.
        • et al.
        Effects of SCN1A and SCN2A polymorphisms on responsiveness to valproic acid monotherapy in epileptic children.
        Epilepsy Res. 2020; 168106485
        • Saruwatari J.
        • Ishitsu T.
        • Nakagawa K.
        Update on the Genetic Polymorphisms of Drug-Metabolizing Enzymes in Antiepileptic Drug Therapy.
        Pharmaceuticals (Basel). 2010; 3: 2709-2732
        • Ream M.A.
        • Mikati M.A.
        Clinical utility of genetic testing in pediatric drug-resistant epilepsy: a pilot study.
        Epilepsy Behav. 2014; 37: 241-248
        • Wu C.C.
        • Tsai M.H.
        • Chu Y.J.
        • Weng W.C.
        • Fan P.C.
        • Lee W.T.
        The role of targeted gene panel in pediatric drug-resistant epilepsy.
        Epilepsy Behav. 2020; 106107003
        • Wolking S.
        • Moreau C.
        • McCormack M.
        • Krause R.
        • Krenn M.
        • Berkovic S.
        • et al.
        Assessing the role of rare genetic variants in drug-resistant, non-lesional focal epilepsy.
        Ann Clin Transl Neurol. 2021; 8: 1376-1387
        • Anazi S.
        • Maddirevula S.
        • Faqeih E.
        • Alsedairy H.
        • Alzahrani F.
        • Shamseldin H.E.
        • et al.
        Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield.
        Mol Psychiatry. 2017; 22: 615-624
        • Assoum M.
        • Philippe C.
        • Isidor B.
        • Perrin L.
        • Makrythanasis P.
        • Sondheimer N.
        • et al.
        Autosomal-Recessive Mutations in AP3B2, Adaptor-Related Protein Complex 3 Beta 2 Subunit, Cause an Early-Onset Epileptic Encephalopathy with Optic Atrophy.
        Am J Hum Genet. 2016; 99: 1368-1376
        • Zhou P.
        • Meng H.
        • Liang X.
        • Lei X.
        • Zhang J.
        • Bian W.
        • et al.
        ADGRV1 Variants in Febrile Seizures/Epilepsy With Antecedent Febrile Seizures and Their Associations With Audio-Visual Abnormalities.
        Front Mol Neurosci. 2022; 15864074
        • Dahawi M.
        • Elmagzoub M.S.
        • E A.A.
        • Baldassari S.
        • Achaz G.
        • Elmugadam F.A.
        • et al.
        Involvement of ADGRV1 Gene in Familial Forms of Genetic Generalized Epilepsy.
        Front Neurol. 2021; 12738272
        • Berko E.R.
        • Cho M.T.
        • Eng C.
        • Shao Y.
        • Sweetser D.A.
        • Waxler J.
        • et al.
        De novo missense variants in HECW2 are associated with neurodevelopmental delay and hypotonia.
        J Med Genet. 2017; 54: 84-86
        • Halvardson J.
        • Zhao J.J.
        • Zaghlool A.
        • Wentzel C.
        • Georgii-Hemming P.
        • Månsson E.
        • et al.
        Mutations in HECW2 are associated with intellectual disability and epilepsy.
        J Med Genet. 2016; 53: 697-704
        • Li X.
        • Poschmann S.
        • Chen Q.
        • Fazeli W.
        • Oundjian N.J.
        • Snoeijen-Schouwenaars F.M.
        • et al.
        De novo BK channel variant causes epilepsy by affecting voltage gating but not Ca(2+) sensitivity.
        Eur J Hum Genet. 2018; 26: 220-229
        • Durmaz B.
        • Wollnik B.
        • Cogulu O.
        • Li Y.
        • Tekgul H.
        • Hazan F.
        • et al.
        Pontocerebellar hypoplasia type III (CLAM): extended phenotype and novel molecular findings.
        J Neurol. 2009; 256: 416-419
        • Ahmed M.Y.
        • Chioza B.A.
        • Rajab A.
        • Schmitz-Abe K.
        • Al-Khayat A.
        • Al-Turki S.
        • et al.
        Loss of PCLO function underlies pontocerebellar hypoplasia type III.
        Neurology. 2015; 84: 1745-1750
        • Olson H.
        • Shen Y.
        • Avallone J.
        • et al.
        Copy number variation plays an important role in clinical epilepsy.
        Ann Neurol. 2014; 75: 943-958